936 resultados para static random access memory
Resumo:
This study assessed the effects of increasing dietary fibre levels in concentrate rations and providing access to straw in racks on the welfare of pregnant sows housed in small static groups. In a 2 x 2 factorial design experiment, 128 Large White x Landrace pregnant sows were offered one of two diets: (i) High fibre diet with 9% crude fibre, or (ii) Control diet with 4.5% CF, and one of two levels of access to a foraging substrate: (i) access to straw in racks or (ii) no straw. The study was replicated eight times using groups of four sows, and treatment periods lasted four weeks. Sows were housed in pens with voluntary cubicles and a slatted exercise area and were offered a wet diet twice a day. Back-fat levels were measured before sows were mixed into groups at 28 days post partum, and four weeks later. Aggressive interactions were recorded on the day of mixing, and injury scores were recorded one week post mixing. Scan sampling was used to collect data on general activity, posture and location of the sows, and on sham-chewing and bar-biting behaviours across the treatment period. In addition, detailed focal observations were carried out on all sows across the treatment period. Straw usage was also recorded. There were no treatment effects on changes in back-fat levels over the treatment period. Treatments had no effect on post-mixing aggression or on injury scores. However, focal observations showed that sows with access to straw were involved in fewer bouts of head-thrusting over the treatment period. Control diet sows spent more time inactive than sows on the high fibre diet, however high fibre diet sows spent more time lying with eyes closed than sows on the control diet. Sows on the high fibre diet with access to straw showed less sham-chewing and bar-biting behaviour than sows in other treatments. These results show that although a diet containing 9% crude fibre promoted resting behaviour, it was necessary to combine it with access to straw to reduce stereotypic behaviour of sows in small static groups.
Resumo:
A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</
Resumo:
Between 2006 and 2007, the Prisons Memory Archive (PMA) filmed participants, including former prisoners, prison staff, teachers, chaplains, visitors, solicitors and welfare workers back inside the Maze/Long Kesh Prison and Armagh Gaol. They shared the memory of the time spent in these prisons during the period of political violence from 1970 - 2000 in Northern Ireland, commonly known as the Troubles. Underpinning the overall methodology is co-ownership of the material, which gives participants the right to veto as well as to participate in the processes of editing and exhibiting their stories, so prioritising the value of co-authorship of their stories. The PMA adopted life-story interviewing techniques with the empty sites stimulating participants’ memory while they walked and talked their way around the empty sites. A third feature is inclusivity: the archive holds stories from across the full spectrum of the prison experience. A selection of the material, with accompanying context and links is available online www.prisonsmemoryarchive.com
Further Information:
The protocols of inclusivity, co-ownership and life-story telling make this collection significant as an initiative that engages with contemporary problems of how to negotiate narratives about a conflicted past in a society emerging out of violence. Inclusivity means that prison staff, prisoners, governors, chaplains, tutors and visitors have participated, relating their individual and collective experiences, which sit side by side on the PMA website. Co-ownership addresses the issues of ethics and sensitivity, allowing key constituencies to be involved. Life-story telling, based on oral history methodologies allows participants to be the authors of their own stories, crucial when dealing with sensitive issues from a violent past. The website hosts a selection of excerpts, e.g. the Armagh Stories page shows excerpts from 15 participants, while the Maze and Long Kesh Prison page offers interactive access to 24 participants from that prison. Using an interactive documentary structure, the site offers users opportunities to navigate their own way through the material and encourages them to hear and see the ‘other’, central to attempts at encouraging dialogue in a divided society. Further, public discussions have been held after screening of excerpts with community groups in the following locations - Belfast, Newtownabbey, Derry, Armagh, Enniskillen, London, Cork, Maynooth, Clones, and Monaghan. Extracts have been screened at international academic conferences in Valencia, Australia, Tartu, Estonia, Prague, and York. A dataset of the content, with description and links, is available for REF purposes.
Resumo:
We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads. © 2012 IEEE.
Resumo:
This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.
Resumo:
Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption.
This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.
Resumo:
The worsening of process variations and the consequent increased spreads in circuit performance and consumed power hinder the satisfaction of the targeted budgets and lead to yield loss. Corner based design and adoption of design guardbands might limit the yield loss. However, in many cases such methods may not be able to capture the real effects which might be way better than the predicted ones leading to increasingly pessimistic designs. The situation is even more severe in memories which consist of substantially different individual building blocks, further complicating the accurate analysis of the impact of variations at the architecture level leaving many potential issues uncovered and opportunities unexploited. In this paper, we develop a framework for capturing non-trivial statistical interactions among all the components of a memory/cache. The developed tool is able to find the optimum memory/cache configuration under various constraints allowing the designers to make the right choices early in the design cycle and consequently improve performance, energy, and especially yield. Our, results indicate that the consideration of the architectural interactions between the memory components allow to relax the pessimistic access times that are predicted by existing techniques.
Resumo:
The area and power consumption of low-density parity check (LDPC) decoders are typically dominated by embedded memories. To alleviate such high memory costs, this paper exploits the fact that all internal memories of a LDPC decoder are frequently updated with new data. These unique memory access statistics are taken advantage of by replacing all static standard-cell based memories (SCMs) of a prior-art LDPC decoder implementation by dynamic SCMs (D-SCMs), which are designed to retain data just long enough to guarantee reliable operation. The use of D-SCMs leads to a 44% reduction in silicon area of the LDPC decoder compared to the use of static SCMs. The low-power LDPC decoder architecture with refresh-free D-SCMs was implemented in a 90nm CMOS process, and silicon measurements show full functionality and an information bit throughput of up to 600 Mbps (as required by the IEEE 802.11n standard).
Resumo:
Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.
Resumo:
In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements static-priority scheduling, supports a large number of priority levels and is fully distributed. It is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and show that the response-time analysis developed for the protocol offers an upper bound on the response times.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
Consider the problem of scheduling sporadic message transmission requests with deadlines. For wired channels, this has been achieved successfully using the CAN bus. For wireless channels, researchers have recently proposed a similar solution; a collision-free medium access control (MAC) protocol that implements static-priority scheduling. Unfortunately no implementation has been reported, yet. We implement and evaluate it to find that the implementation indeed is collision-free and prioritized. This allows us to develop schedulability analysis for the implementation. We measure the response times of messages in our implementation and find that our new response-time analysis indeed offers an upper bound on the response times. This enables a new class of wireless real-time systems with timeliness guarantees for sporadic messages and it opens-up a new research area: schedulability analysis for wireless networks.
Resumo:
Traditional psychometric theory and practice classify people according to broad ability dimensions but do not examine how these mental processes occur. Hunt and Lansman (1975) proposed a 'distributed memory' model of cognitive processes with emphasis on how to describe individual differences based on the assumption that each individual possesses the same components. It is in the quality of these components ~hat individual differences arise. Carroll (1974) expands Hunt's model to include a production system (after Newell and Simon, 1973) and a response system. He developed a framework of factor analytic (FA) factors for : the purpose of describing how individual differences may arise from them. This scheme is to be used in the analysis of psychometric tes ts . Recent advances in the field of information processing are examined and include. 1) Hunt's development of differences between subjects designated as high or low verbal , 2) Miller's pursuit of the magic number seven, plus or minus two, 3) Ferguson's examination of transfer and abilities and, 4) Brown's discoveries concerning strategy teaching and retardates . In order to examine possible sources of individual differences arising from cognitive tasks, traditional psychometric tests were searched for a suitable perceptual task which could be varied slightly and administered to gauge learning effects produced by controlling independent variables. It also had to be suitable for analysis using Carroll's f ramework . The Coding Task (a symbol substitution test) found i n the Performance Scale of the WISe was chosen. Two experiments were devised to test the following hypotheses. 1) High verbals should be able to complete significantly more items on the Symbol Substitution Task than low verbals (Hunt, Lansman, 1975). 2) Having previous practice on a task, where strategies involved in the task may be identified, increases the amount of output on a similar task (Carroll, 1974). J) There should be a sUbstantial decrease in the amount of output as the load on STM is increased (Miller, 1956) . 4) Repeated measures should produce an increase in output over trials and where individual differences in previously acquired abilities are involved, these should differentiate individuals over trials (Ferguson, 1956). S) Teaching slow learners a rehearsal strategy would improve their learning such that their learning would resemble that of normals on the ,:same task. (Brown, 1974). In the first experiment 60 subjects were d.ivided·into high and low verbal, further divided randomly into a practice group and nonpractice group. Five subjects in each group were assigned randomly to work on a five, seven and nine digit code throughout the experiment. The practice group was given three trials of two minutes each on the practice code (designed to eliminate transfer effects due to symbol similarity) and then three trials of two minutes each on the actual SST task . The nonpractice group was given three trials of two minutes each on the same actual SST task . Results were analyzed using a four-way analysis of variance . In the second experiment 18 slow learners were divided randomly into two groups. one group receiving a planned strategy practioe, the other receiving random practice. Both groups worked on the actual code to be used later in the actual task. Within each group subjects were randomly assigned to work on a five, seven or nine digit code throughout. Both practice and actual tests consisted on three trials of two minutes each. Results were analyzed using a three-way analysis of variance . It was found in t he first experiment that 1) high or low verbal ability by itself did not produce significantly different results. However, when in interaction with the other independent variables, a difference in performance was noted . 2) The previous practice variable was significant over all segments of the experiment. Those who received previo.us practice were able to score significantly higher than those without it. J) Increasing the size of the load on STM severely restricts performance. 4) The effect of repeated trials proved to be beneficial. Generally, gains were made on each successive trial within each group. S) In the second experiment, slow learners who were allowed to practice randomly performed better on the actual task than subjeots who were taught the code by means of a planned strategy. Upon analysis using the Carroll scheme, individual differences were noted in the ability to develop strategies of storing, searching and retrieving items from STM, and in adopting necessary rehearsals for retention in STM. While these strategies may benef it some it was found that for others they may be harmful . Temporal aspects and perceptual speed were also found to be sources of variance within individuals . Generally it was found that the largest single factor i nfluencing learning on this task was the repeated measures . What e~ables gains to be made, varies with individuals . There are environmental factors, specific abilities, strategy development, previous learning, amount of load on STM , perceptual and temporal parameters which influence learning and these have serious implications for educational programs .
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.