942 resultados para stars: coronae
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A class of boson-fermion stars, whose spin-0 and spin-1/2 constituents interact through a U(1) current-current term in the Lagrangian density, is analyzed. It is shown that it describes the low-energy behavior of a system of weakly interacting massive particles (WIMPs) from the leptonic sector of the minimal supersymmetric standard model. In this case the effective coupling constant A is related to the Fermi constant GF.
Resumo:
In the weak field approximation of higher order gravity theory a gravitational potential is described by a Newtonian plus a Yukawa-like term. This new term is used to explain some aspects of galactic dynamics, without considering dark matter. Its presence modifies the scattering probability of a massive intruder star and relaxation time of the stellar system.
Resumo:
In this paper we introduce a current-current type interaction term in the Lagrangian density of gravity coupled to complex scalar fields, in the presence of a degenerated Fermi gas. For low transferred momenta, such a term, which might account for the interaction among boson and fermion constituents of compact stellar objects, is subsequently reduced to a quadratic one in the scalar sector. This procedure enforces the use of a complex radial field counterpart in the equations of motion. The real and the imaginary components of the scalar field exhibit different behavior as the interaction increases. The results also suggest that the Bose-Fermi system undergoes a phase transition for a suitable choice of the coupling constant.
Resumo:
Considering the ferromagnetic screening for the decay of the X-ray neutron star magnetic field in the binary accretion phase, the phase transition of ferromagnetic materials in the crust of neutron star induces the ferromagnetic screening saturation of the accreted crust, which results in the minimum surface magnetic field of the accreting neutron star, about 108 G, if the accreted matter has completely replaced the crust mass of the neutron star. The magnetic field evolution versus accreted mass is given as Bs ∝ ΔM-0.9, and the obtained magnetic field versus spin period relation is consistent with the distribution of the binary X-ray sources and recycled pulsars. The further thermal effect on the magnetic evolution is also studied.
Resumo:
We discuss the possible influence of gravity in the neutronization process p+e-→νe, which is particularly important as a cooling mechanism of neutron stars. Our approach is semiclassical in the sense that leptonic fields are quantized on a classical background spacetime, while neutrons and protons are treated as excited and unexcited nucleon states, respectively. We expect gravity to have some influence wherever the energy content carried by the in state is barely above the neutron mass. In this case the emitted neutrinos would be soft enough to have a wavelength of the same order as the space curvature radius. ©2000 The American Physical Society.
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.
Resumo:
We have searched for young star-forming regions around the merger remnant NGC 2782. By using Galaxy Evolution Explorer far-ultraviolet and near-ultraviolet imaging and H i data we found seven ultraviolet sources, located at distances greater than 26 kpc from the centre of NGC 2782, and coinciding with its western H i tidal tail. These regions were resolved in several smaller systems when Gemini/Gemini multi-object spectrograph (GMOS) r-band images were used. We compared the observed colours to stellar population synthesis models and found that these objects have ages of similar to 1 to 11 Myr and masses ranging from 103.9 to 104.6 M circle dot. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H) = 8.74 +/- 0.20, 8.81 +/- 0.20 and 8.78 +/- 0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the centre of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.