952 resultados para standard gas generation
Resumo:
Mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR 12 degrees 50'N) were analyzed for U-series isotopes and compositions of plagioclase-hosted melt inclusions. The Ra-226 and Th-230 excesses are negatively correlated; the Ra-226 excess is positively correlated with Mg# and Sm/Nd, and is negatively correlated with La/Sm and Fe-8; the Th-230 excess is positively correlated with Fe-8 and La/Sm and is negatively correlated with Mg# and Sm/Nd. Interpretation of these correlations is critical for understanding the magmatic process. There are two models (the dynamic model and the "two-porosity" model) for interpreting these correlations, however, some crucial parameters used in these models are not ascertained. We propose instead a model to explain the U-series isotopic compositions based on the control of melt density variation. For melting either peridotite or the "marble-cake" mantle, the FeOt content, Th-230 excess and La/Sm ratio increases and Sm/Nd decreases with increasing pressure. A deep melt will evolve to a higher density and lower Mg# than a shallow melt, the former corresponds to a long residence time, which lowers the Ra-226 excess significantly. This model is supported by the existence of low Ra-226 excesses and high Th-230 excesses in MORBs having a high Fe-8 content and high density. The positive correlation of Ra-226 excess and magma liquidus temperature implies that the shallow melt is cooled less than the deep melt due to its low density and short residence time. The correlations among Fe-8, Ti-8 and Ca-8/Al-8 in plagioclase-hosted melt inclusions further prove that MORBs are formed from melts having a negative correlation in melting depths and degrees. The negative correlation of Ra-226 excess vs. chemical diversity index (standard deviation of Fe-8, Ti-8 and Ca-8/Al-8) of the melt inclusions is in accordance with the influence of a density-controlled magma residence time. We conclude that the magma density variation exerts significant control on residence time and U-series isotopic compositions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.
Resumo:
With the development of petroleum exploration, subtle reservoir has become the main exploration object in Dongying Depression, which requires some new technologies and methods to further reveal the geological characteristics in step with the mature exploration stage. In this paper, on the references to the studies of petroleum system and multiple oil-gas accumulation belt with flexible maneuverability, and the application of systematic theory, the concept of reservoir assemblage is initially defined as "the association of active source rock(s) and hydrocarbon reservoir(s) that are genetically related, with the bridge of pathway system in an oil and gas bearing basin". Compared with the theories of petroleum system and multiple oil-gas accumulation belts, it emphasizes on the processes of petroleum migration and accumulation and the correlation among active source rock, trapped hydrocarbon and migration pathway, and has been confirmed to be more suitably applied to high maturely explored basin. In the first study of this paper, sequence stratigraphy and subtle analytical technology of source rock have been employed to find that two categories of source rock with their characteristic types of organic matter and substantial states occurred in Dongying Depression. The first category, consisting of the oil shales within the third-order sequences of lacustrine expanding system tracts in the upper interval of the fourth Member of Shahejie Formation and both in the middle and lower intervals of the third Member of Shahejie Formation, is featured with the highest abundance of total organic matter (TOC) and the strongest abilities of hydrocarbon generation and expulsion, which is classified into the standard of good hydrocarbon source rock. Exploration assessment confirmed that about 70-80% of hydrocarbon in Dongying Depression came from this set of source rock for which the low sedimentary rate and strong oxygen-free environment would play the key role during its generation. The second category, composed of organic matter of dark mudstone in high stand system tracts in the upper and middle intervals of the third Member of Shahejie Formation, has been characterized by low content of total organic matter which mostly dispersedly distributes, and formed in the pre-delta to delta front environments. In classification, it belongs to the ordinary standard of source rocks. In the second research part, through the studies of high frequency sequence stratigraphy, fault geometry and active history combining with geochemistry of fluid inclusion and nitrogen compound and simulation test of hydrocarbon migration and accumulation, the faults have been thought to be the principal conduits, and the sandy bodies and unconformities might played the complementary pathways for hydrocarbon migration and accumulation in Dongying Depression of the continental faulted basin. Therefore, the fault activities may mainly constrain on the development of hydrocarbon pathways in space and time. Even more, using homogenization temperatures of fluid inclusion in digenetic minerals, three critical moments for hydrocarbon accumulation have been determined as well in Dongying Depression, which happened during the late stage of Dongying Formation (Ed), the early stage of Guantao Formation (Nig) and the early stage of Minghuazhen Formation (Nim), respectively. Comparatively, the last stage is looked as the main forming-reservoir period, which has also been supported by the results of geochemical analysis and simulation experiments of hydrocarbon generation and expulsion. Clearly, the times of hydrocarbon migration and accumulation are consistent with those of the fault activities in Dongying Depression, which indicate that tectonic activities would control the forming-reservoir. A conceptual model of faulting-episodic expulsion coupled with episodic forming-reservoir has then been established in this study. In the third part of this paper, some focusing areas were selected for the fine descriptions of pathway distribution and forming-reservoir, which has given four types of reservoir assemblage in terms of the main pathway and its correlation with the reservoir and trap: (1) mainly consisted of sandy bodies; (2) mainly consisted of faults; (3) mainly consisted of unconformities; and (4) their complex with two or three types of pathways. This classified criteria has also been applied to access the risk of some prospected traps in Dongying Depression. Finally, through the application of reservoir assemblage integrated with pathway distribution to all the prospective targets in Dongying Depression, the new favorably hydrocarbon accumulated belts have been figured out, and more subtle reservoirs have also been found. For examples, during 2000 and 2002, in the mature exploration areas, such as Liangjialou and Shengtuo structural closures etc., newly proved reserves were 2274 * 104t, and forecasted oil reserves 5660-5860xl04t; and in the predicted favorable areas, newly additional controlled oil reserves was 3355xl04t. Besides those, many other favorable exploration areas need to be further appraised.
Resumo:
A new method has been developed to describe the quantitative relationship between molecular structures of PCDFs and their gas chromatographic retention indices on a 30-m fused silica column coated with DB-5 stationary phase. The regression equation is derived with a multiple correlation coefficient greater than 0.9995. The highest residual is 20 index units. The standard deviation is less than 7 index units. Using this regression equation, the retention indices of PCDFs for which data is not available have also been predicted. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.
Resumo:
Numerical simulations have been used to study broad-band supercontinuum generation in optical fibers with dispersion and nonlinearity characteristics typical and photonic crystal or tapered fibers structures. The simulations include optical shock and Raman nonlinearity terms, with quantum noise taken into account phenomenologically by including in the input field a noise seed of one photon per mode with random phase. For input pulses of 150-fs duration injected in the anomalous dispersion regime, the effect of modulational instability is shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinuum. The spectral phase fluctuations are quantified by performing multiple simulations and calculating both the standard deviation of the phase and, more rigorously, the degree of first-order coherence as a function of wavelength across the spectrum. By performing simulations over a range of input pulse durations and wavelengths, we can identify the conditions under which coherent supercontinua with a well-defined spectral phase are generated.
Resumo:
A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced-scale and full-scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results
Resumo:
Despite the ecological importance of copepods, few Next Generation Sequencing studies (NGS) have been performed on small crustaceans, and a standard method for RNA extraction is lacking. In this study, we compared three commonly-used methods: TRIzol®, Aurum Total RNA Mini Kit and Qiagen RNeasy Micro Kit, in combination with preservation reagents TRIzol® or RNAlater®, to obtain high-quality and quantity of RNA from copepods for NGS. Total RNA was extracted from the copepods Calanus helgolandicus, Centropages typicus and Temora stylifera and its quantity and quality were evaluated using NanoDrop, agarose gel electrophoresis and Agilent Bioanalyzer. Our results demonstrate that preservation of copepods in RNAlater® and extraction with Qiagen RNeasy Micro Kit were the optimal isolation method for high-quality and quantity of RNA for NGS studies of C. helgolandicus. Intriguingly, C. helgolandicus 28S rRNA is formed by two subunits that separate after heat-denaturation and migrate along with 18S rRNA. This unique property of protostome RNA has never been reported in copepods. Overall, our comparative study on RNA extraction protocols will help increase gene expression studies on copepods using high-throughput applications, such as RNA-Seq and microarrays.
Resumo:
A generic architecture for implementing the advanced encryption standard (AES) encryption algorithm in silicon is proposed. This allows the instantiation of a wide range of chip specifications, with these taking the form of semiconductor intellectual property (IP) cores. Cores implemented from this architecture can perform both encryption and decryption and support four modes of operation: (i) electronic codebook mode; (ii) output feedback mode; (iii) cipher block chaining mode; and (iv) ciphertext feedback mode. Chip designs can also be generated to cover all three AES key lengths, namely 128 bits, 192 bits and 256 bits. On-the-fly generation of the round keys required during decryption is also possible. The general, flexible and multi-functional nature of the approach described contrasts with previous designs which, to date, have been focused on specific implementations. The presented ideas are demonstrated by implementation in FPGA technology. However, the architecture and IP cores derived from this are easily migratable to other silicon technologies including ASIC and PLD and are capable of covering a wide range of modem communication systems cryptographic requirements. Moreover, the designs produced have a gate count and throughput comparable with or better than the previous one-off solutions.
Resumo:
This study describes an optimized protocol for the generation of Amplified Fragment Length Polymorphism (AFLP) markers in a stingless bee. Essential modifications to standard protocols are a restriction enzyme digestion (EcoRI and Tru1I) in a two-step procedure, combined with a touchdown program in the selective PCR amplification step and product labelling by incorporation of alpha[P-33]dATP. In an analysis of 75 workers collected from three colonies of Melipona quadrifasciata we obtained 719 markers. Analysis of genetic variability revealed that on average 32% of the markers were polymorphic within a colony. Compared to the overall percentage of polymorphism (44% of the markers detected in our bee samples), the observed rates of within-colony polymorphism are remarkably high, considering that the workers of each colony were all of spring of a singly mated queen.
Resumo:
The planar 13.56MHz RF-excited low temperature atmospheric pressure plasma jet (APPJ) investigated in this study is operated with helium feed gas and a small molecular oxygen admixture. The effluent leaving the discharge through the jet’s nozzle contains very few charged particles and a high reactive oxygen species’ density. As its main reactive radical, essential for numerous applications, the ground state atomic oxygen density in the APPJ’s effluent is measured spatially resolved with two-photon absorption laser induced fluorescence spectroscopy. The atomic oxygen density at the nozzle reaches a value of ~1016 cm-3. Even at several centimetres distance still 1% of this initial atomic oxygen density can be detected. Optical emission spectroscopy (OES) reveals the presence of short living excited oxygen atoms up to 10 cm distance from the jet’s nozzle. The measured high ground state atomic oxygen density and the unaccounted for presence of excited atomic oxygen require further investigations on a possible energy transfer from the APPJ’s discharge region into the effluent: energetic vacuum ultraviolet radiation, measured by OES down to 110 nm, reaches far into the effluent where it is presumed to be responsible for the generation of atomic oxygen.
Resumo:
The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The basic theory behind conventional colourimetric and fluorimetric optical sensors for CO2 is examined and special attention is given to the effect on sensor response of the key parameters of initial base concentration and dye acid dissociation constant, K(D). Experimental results obtained in aqueous solution using a variety of different dyes and initial base concentrations are consistent with the predictions made by the theoretical model. A series of model-generated pK(D) versus %CO2 curves for different initial base concentrations allow those interested in constructing an optical CO2 sensor to readily identify the optimum dye/initial base combination for their sensor; the response of the sensor can be subsequently fine-tuned through a minor variation in the initial base concentration. The model and all its predictions appear also to apply to the new generation of plastic film CO2 sensors which have just been developed.
Resumo:
A gas chromatographic/mass spectrometric method is described for the detection of clenbuterol residues in liver, muscle, urine and retina. Tissue samples are first digested using protease and any clenbuterol present is extracted using a simple liquid/liquid extraction procedure. The dried extracts are then derivatized using methylboronic acid and the derivatives are subjected to gas chromatography/mass spectrometry on a magnetic sector instrument. The detection limit of the assay is 0.05 ng g-1 clenbuterol in liver, muscle or urine using a 10 g sample size, and 4 ng g-1 in retina using a 0.5 g sample size. The assay is made very specific by using selected ion monitoring of three ions at a resolution of 3500 and by ion ratio measurements. The precision and reproducibility of the assay are enhanced by the use of a deuterated internal standard, with a typical coefficient of variation of 3%.
Resumo:
The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.