999 resultados para spent nuclear fuel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Final report to Sanderson and Porter for subcontract no. S-3 under USAEC Prime Contract no. AT(30-1)-2378."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unclassified reports on processing of enriched UF₆ into U metal, U-base alloys, UO₂, and UO₂SO₄ for use a reactor fuels are annotated. Recovery of enriched U scrap, methods of isotopic analysis, health physics, criticality problems, and materials management are emphasized. A few references to papers presented at the Geneva Conference, 1955, and other recent nonreport literature are included. 254 references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Work performed at the Sylvania-Corning Nuclear Corporation under contract AT (30-1) GEN-366 with the Division of Reactor Development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes papers describing research sponsored by the Office of Nuclear Regulatory Research, NRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation morphology and habit planes of the delta-phase Zr hydrides, which were precipitated within the a-phase matrix grains and along the grain boundaries of recrystallized Zircaloy-2 cladding tube, have been examined by electron backscatter diffraction (EBSD). Radially-oriented hydrides, induced by residual tensile stress, precipitated in the outside region of the cladding, and circumferentially-oriented hydrides in the stress-free middle region of the cladding. The most common crystallographic relationship for both types of the hydrides precipitated at the inter- and intra-granular sites was identical at (0001)(alpha) // {111}(delta), with {1017}(alpha) // {111}(delta) being the occasional exception only for the inter-granular radial hydrides. When tensile stress was loaded, the intra-granular hydrides tended to preferentially precipitate in the grains with circumferential basal pole textures. The inter-granular hydrides tended to preferentially precipitate on the grain faces opposite to tensile axis. The change of prioritization in the precipitation sites for the hydrides due to tensile stress could be explained in terms of the relaxation effect of constrained elastic energy on the terminal solid solubility of hydrogen at hydride precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brewing industry produces large amounts of by-products and wastes like brewers' spent grain (BSG). In Germany, each year approximately 2.1 million tonnes of BSG are generated. During the last years conventional routes of BSG utilization face a remarkable change, such as the decline in the demand as animal feed. Due to its high content of organic matter energetic utilization may create an additional economic value for breweries. Furthermore, in the recent past breweries tend to shift their energy supply towards more sustainable concepts. Although, a decent number of research projects were carried out already, still no mature strategy is available. However, one possible solution can be the mechanical pretreatment of BSG. This step allows optimized energy utilization by the fractionation of BSG. Due to the transfer of digestible components, such as protein, to the liquid phase, the solid phase will largely consist of combustible components. That represents an opportunity to produce a solid biofuel with lower fuelnitrogen content compared to only thermal dried BSG. Therefore, two main purposes for the mechanical pre-treatment were determined, (1) to reduce the moisture content to at least 60 % (w/w) and (2) to diminish the protein content of the solid phase by 30 %. Moreover, the combustion trials should demonstrate whether stable processes and flue gas emissions within the legal limits in Germany are feasible. The results of the mechanical pre-treatment trials showed that a decrease of the moisture and protein content has been achieved. With regard to the combustion trials inconsistent outcomes were found. On the one hand a stable combustion was realized. On the other hand the legal emission levels of NOx (500 mgm -3) and dust (50 mgm-3) could not be kept during all trials. The further research steps will focus on the optimization of the air/fuel ratio by reducing the primary and secondary air conditions. Copyright © 2014,AIDIC Servizi S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brewing process is an energy intensive process that uses large quantities of heat and electricity. To produce this energy requires a high, mainly fossil fuel consumption and the cost of this is increasing each year due to rising fuel costs. One of the main by-products from the brewing process is Brewers Spent Grain (BSG), an organic residue with very high moisture content. It is widely available each year and is often given away as cattle feed or disposed of to landfill as waste. Currently these methods of disposal are also costly to the brewing process. The focus of this work was to investigate the energy potential of BSG via pyrolysis, gasification and catalytic steam reforming, in order to produce a tar-free useable fuel gas that can be combusted in a CHP plant to develop heat and electricity. The heat and electricity can either be used on site or exported. The first stage of this work was the drying and pre-treatment of BSG followed by characterisation to determine its basic composition and structure so it can be evaluated for its usefulness as a fuel. A thorough analysis of the characterisation results helps to better understand the thermal behaviour of BSG feedstock so it can be evaluated as a fuel when subjected to thermal conversion processes either by pyrolysis or gasification. The second stage was thermochemical conversion of the feedstock. Gasification of BSG was explored in a fixed bed downdraft gasifier unit. The study investigated whether BSG can be successfully converted by fixed bed downdraft gasification operation and whether it can produce a product gas that can potentially run an engine for heat and power. In addition the pyrolysis of BSG was explored using a novel “Pyroformer” intermediate pyrolysis reactor to investigate the behaviour of BSG under these processing conditions. The physicochemical properties and compositions of the pyrolysis fractions obtained (bio-oil, char and permanent gases) were investigated for their applicability in a combined heat power (CHP) application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Cu and Sn to promote the performance of a 20% Ni/Al2O3 catalyst in the deoxygenation of lipids to fuel-like hydrocarbons was investigated using model triglyceride and fatty acid feeds, as well as algal lipids. In the semi-batch deoxygenation of tristearin at 260 °C a pronounced promotional effect was observed, a 20% Ni-5% Cu/Al2O3 catalyst affording both higher conversion (97%) and selectivity to C10-C17 alkanes (99%) in comparison with unpromoted 20% Ni/Al2O3 (27% conversion and 87% selectivity to C10-C17). In the same reaction at 350 °C, a 20% Ni-1% Sn/Al2O3 catalyst afforded the best results, giving yields of C10-C17 and C17 of 97% and 55%, respectively, which contrasts with the corresponding values of 87 and 21% obtained over 20% Ni/Al2O3. Equally encouraging results were obtained in the semi-batch deoxygenation of stearic acid at 300 °C, in which the 20% Ni-5% Cu/Al2O3 catalyst afforded the highest yields of C10-C17 and C17. Experiments were also conducted at 260 °C in a fixed bed reactor using triolein − a model unsaturated triglyceride − as the feed. While both 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 achieved quantitative yields of diesel-like hydrocarbons at all reaction times sampled, the Cu-promoted catalyst exhibited higher selectivity to longer chain hydrocarbons, a phenomenon which was also observed in experiments involving algal lipids as the feed. Characterization of fresh and spent catalysts indicates that Cu enhances the reducibility of Ni and suppresses both cracking reactions and coke-induced deactivation.