938 resultados para solar system : general
Resumo:
The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.
Resumo:
Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.
Resumo:
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres. Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia. We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 x 0.09 R (Earth) (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 x 0.09 R (Earth) found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10(-5) and the very clear detection of the ""super-Earth"" CoRoT-7b at 3.5 x 10(-4) relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
O objetivo deste trabalho foi estudar o desempenho produtivo, adaptabilidade e estabilidade fenotípica de seis genótipos de tomateiro na região de Marília, SP. Os experimentos foram conduzidos em nove ambientes (seis sob condições de cultivo protegido e três sob condições de céu aberto), com seis genótipos (Carmen, Diva, Donador, Graziela, Vita e HE-295), em blocos casualizados, com quatro repetições. Ocorreram diferenças significativas entre ambientes, e a média geral dos cultivos protegidos superou a dos cultivos a céu aberto quanto à produtividade, apesar de a média geral dos cultivos a céu aberto ser superior quanto ao peso médio de frutos. As cultivares, à exceção de HE-295, demonstraram alta estabilidade, merecendo destaque as cultivares Carmen, Donador e Vita, que tiveram rendimento médio superior ao da média geral, adaptabilidade geral e comportamento previsível em todos os ambientes estudados. Quanto ao peso médio dos frutos, as cultivares Diva e Vita foram as únicas que mostraram ampla adaptabilidade a todos os ambientes, comportamento previsível, além de apresentarem peso médio do fruto superior ao da média geral.
Resumo:
A solar alternative system for water heating is presented. It work on a thermosiphon, consisting of one or two alternative collectors and a water storage tank also alternative, whose main purpose is to socialize the use of energy mainly to be used by people of low income. The collectors were built from the use of pets bottles, cans of beer and soft drinks and tubes of PVC, ½ " and the thermal reservoirs from a drum of polyethylene used for storage of water and garbage placed inside cylinder of fiber glass and EPS ground between the two surfaces. Such collectors are formed by three elements: pet bottles, cans and tubes absorbers. The heating units, which form the collector contains inside the cans that can be closed, in original form or in the form of plate. The collectors have an absorber grid formed by eight absorbers PVC tube, connected through connections at T of the same material and diameter. It will be presented data of the thermal parameters which demonstrate the efficiency of the heating system proposed. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be demonstrated that this alternative heating system, which has as its main feature low cost, presents thermal, economic and materials viabilities
Resumo:
The subject of Classic Gravitation is part of the actual curriculum for High School in Brazil, and it is taught in the first year of that education level. This master thesis presents a research regarding the subject Classic Gravitation in High School. This research was based in two complementary guidelines of research and action. The first guideline was the analysis of 21 didactic books of physics which are the more frequently used in High School, in the city of Natal/RN. The second guideline, worked after being verified the most common deficiencies presents in the didactic books, was the elaboration, followed by a practical application, of a course suggesting how to approach that subject in the classroom. The Parâmetros Curriculares Nacionais para o Ensino Médio (National Curricular Parameters for High School PCNEM) defend that Classic Gravitation is very important in the student s formation and that its study helps the comprehension of many nature s phenomena. Because of this vision of that subject by the PCNEM, the 21 analyzed books were separated in two groups: the first one, containing 10 books, was edited before the spreading of PCNEM, and the second, with 11 books, after that spreading. Whatever the group to which the didactic books belonged, the great majority of them let that subject in a second plan; two of them even suggesting, in the teacher s orientations, that the subject Gravitation can be suppressed in case of insufficient time . These analyses points that the PCNEM had produced no changes in the conception of the authors that wrote books regarding that subject. To analyze the didactic books, we elaborated a script which was used as an analysis tool, in which we put in evidence the relative importance of the historic and philosophic contextualization of the subject, the quotidian experience of the students and the interdisciplinary approach, among other aspects. It became evident that the didactic books give very little emphasis to historic aspects of the knowledge construction, to the relations with the day-by-day questions and to the interdisciplinary character of the subject Gravitation. It calls attention the non concordance among the authors opinions regarding the necessary previous knowledge or prerequisites the students should fulfill in order to begin to study Gravitation. The course we elaborated was given to a group of teachers as well as to students. In those courses we treated theoretical and practical aspects and emphasized historical questions and the ones which are related to people s daily life. The course for teachers was realized as an extra-mural activity of the UFRN and was given by the author of this thesis at the Escola Estadual Francisco Ivo Cavalcanti (a state public school in Natal/RN). There were 23 teachers present, from several public schools and several fields of knowledge. The thesis supervisor and the master degree s colleagues of the author acted as collaborators , reporting the participants opinions and speeches. The course to the students, on the other hand, had the participation of 300 regular students who belonged to 6 different 1st year classes of the High School Escola Marista de Natal (RN), in which the author acts as a physics teacher. The student s course was realized as part of the regular curriculum activities, in which three classes stood under the responsibility of the author and other three classes in charge of another Marista s teacher, who participated as a collaborator . The teacher s course as well as the students one were given in two stages, with five hours each. The first stage was divided in two moments, the first one focused on the survey of the spontaneous conceptions about gravitation, in which we worked basically with experiments of free throwing and pendulum, and the second one focused in theoretical presentations and quarrels about universe s models. In the second stage of the course we improved the study of Kepler s laws and the Newton s Universal Gravitation law, and we used as motivating tools some practices involving the construction of the solar system in scale. As instruments for evaluating both courses we used questionnaires and reported the speeches with participants opinions, beyond usual written evaluations in the course for the students. The teachers who participated in the course showed very good wills in realizing interdisciplinary practices; nevertheless, according their own speeches, they frequently came across the difficulty of how to do . From the experience we had in both courses, we conclude that the approach we propose hear to the teaching of the subject Classic Gravitation , supported on the tripod theory, practice and historical and philosophical aspects, is viable and effective. One hopes that this research may contribute in the formation of a opinion, among the teachers, concerning how to approach the subject of Classic Gravitation, and may offer suggestions in order those who want to apply that approach may develop classroom practices aiming to improve the teaching of that subject, which has a singular importance in the formation of High School students
Resumo:
In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems
Resumo:
Since Michel Mayor and his student Didier Queloz s pioneer announcement, in 1995, of the existence of a planet orbiting the star 51 Peg, up to present date, 695 extrasolar planets orbiting stars of spectral type F, G, K and M have been discovered. A study on the behavior of the total angular momentum of the planetary systems known up to present date becomes relevant when we know that about 98% of the angular momentum of the solar system is associated with the planets, although they represent only 0.15 percent of the mass of the whole system. In this dissertation we study the behavior of stellar angular momentum, orbital angular momentum and total angular momentum in a sample of 282 stars harboring planets, including 40 multiple systems. We observed that planetary systems containing more than one known planet have both higher orbital angular momentum and total angular momentum compared to those who have only one planet. This analysis shows that multiplanet systems tend to have higher momenta, suggesting that the planets in such systems that contribute to the greater portion momenta have been found. Thus, planetary systems with lower values for the momenta represent the best candidates to the discovery of new planets
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)