966 resultados para sol-gel method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and luminescence properties of Zn2SiO4:Mn phosphor layers on spherical silica spheres,i.e.,a kind of core-shell complex phosphor,Zn2SiO4:Mn@SiO2 were described.Firstly,monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS)Si(OC2H5)4 under base condition (using NH4OH as the catalyst).Secondly,the silica spheres were coated with a Zn2SiO4:Mn phosphor layer by a Pechini sol-gel process.X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrum(EDS) and photoluminescence(PL) were employed to characterize the resulting complex phosphor.The results comfirm that 1000℃ annealed sample consists of crystalline Zn2SiO4:Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521nm corresponding 4T1(4G)-6A1(6S) transition,and the possible luminescence mechanism is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaWO4 phosphor films doped with rare-earth ions (Eu3+, Dy-,(3+) Sm3+, Er3+) were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, atomic force microscopy, and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting powders and films. The results of the XRD analysis indicated that the films began to crystallize at 400degreesC and that the crystallinity increased with elevation of the annealing temperature. The doped rare-earth ions showed their characteristic emissions in crystalline CaWO4 phosphor films due to energy transfer from WO42- groups to them. Both the lifetimes and PL intensities of the doped rare-earth ions increased with increasing annealing temperature, from 500 to 900degreesC, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined as 30, 1.5, 1.5, 0.5 at.% of Ca2+ in CaWO4 films annealed at 900degreesC, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RE3+ (Eu3+, Tb3+) complexes with carboxylic acid (salicylic acid and benzoic acid) were introduced into the sol, which was prepared by the hydrolysis of tetraethoxysilane (TEOS). A sol-gel luminescent thin film (SG-LTF) was then prepared by dispersing the sol onto a silica substrate by a spin coating method. Multi-layer luminescent thin films were prepared by repeating the same process. The luminescent spectra, fluorescence lifetime and thermal stability of the SG-LTFs were investigated. For the reason of comparison polyvinylbutyral (PVB) was added into a N,N-dimethylformamide (DMF) solution in which the comparative RE3+ carboxylic acid complexes were previously dissolved to form the DMF/PVB solution and the PVB luminescent thin film (PVB-LTF) was prepared. The results show that a broad excitation band indicates the formation of RE complexes in the solid SG-LTFs. RE ions, which are restrained in the silica matrix, present longer lifetimes and higher thermal stability than that in the PVB-LTF containing the corresponding pure complexes. The different doping concentration of RE (III) complexes in the SG-LTFs and the different change of the emission intensities with the heat treatment temperature in the sol-gel thin film and the sol-gel bulk gel were also discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth complex Eu(phen)(2)Cl-3 was introduced into a SiO2-PEG-400 hybrid material by a sol-ger method. The result indicated that Poly(ethylene glycol) (PEG) could associate with Eu3+ and change the surroundings of Eu3+ in the hybrid material, greatly improving the decay time. Transparent SiO2-PEG400 hybrid doped with a very small amount of Eu(phen)(2)Cl-3 has better mechanical properties and can retain excellent luminescence properties of the rare earth complex. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-gel derived luminescent thin films doped with rare earth (RE) complexes were prepared using an in-situ synthesis method with a two-step hydrolysis process and the luminescence spectra were measured. Fluorescence Lifetime and thermal stability were investigated. The results show that a broad excitation band indicates the formation of RE complexes in the solid thin films. RE ions, which are restrained in a silica matrix, present longer lifetime and higher thermal stability than that in DMF/PVB films containing the corresponding pure complexes. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

yA review with 44 references is presented on the development of sol-gel-based biosensor. The main discussions are devoted to the process, advantages and properties of sol-gel immobilization method, sol-gel optical biosensor and amperometric biosensor, also the trend in this field is forecasted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of solid electrolytes (Ce0.8RE0.2)(1-x)MxO2-delta(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800 degrees C. The synthesis temperature by the sol-gel methods was about 700 degrees C lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE2O3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce0.8Sm0.2)(1-0.05)Ca0.05O2-delta is 0.126 S.cm(-1) and 0.99 at 800 degrees C, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for the preparation of titania sol–gel derived oxygen sensors based on the ruthenium(II) dye, [Ru(bpy)3]2+, is described. A titania sol–gel paste film was cast onto microscope slides, and the dye ion-paired to the deprotonated, hydroxylated groups on the film's surface from an aqueous solution of the dye at pH 11. The resulting sensor film is extremely oxygen sensitive, with a PO2 (S = 1/2) value (i.e. the partial pressure of oxygen required in order to reduce the original, oxygen free, luminescence intensity by 50%) of 0.011 atm. The sensor undergoes 95% response to oxygen in 4 s, and shows 95% recovery of its luminescence in argon within 7 s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results presented in this thesis have been achieved under the Ph.D. project entitled “Nonaqueous Sol-Gel routes to doped metal oxide nanoparticles: Synthesis, characterization, assembly and properties”. The purpose of this study is the investigation of metal oxide nanostructures doped with metals of a diverse nature, leading to different type of applications. The easier control over the reaction kinetics in solvothermal routes, compared to aqueous methods, allows to better match the reactivity between metal oxide precursors, paving the way to a facile and low temperature production of doped oxides. In this manuscript diverse examples of the exploitation of the “Benzyl Alcohol Route” are discussed. Such a powerful pathway was utilized for the synthesis of transition metal doped zirconia, hafnia and various perovskites, and the study of their magnetic properties, as well as the synthesis of rare earth doped zirconium oxide. A further extension, proving the solidity of the synthetic method, is shown for the preparation of Li4Ti5O12 nanocrystals carrying excellent electrochemical properties for lithium-ion battery applications. Finally, the effect of doping and other reaction parameters on the assembly of the nanocrystals is discussed. These studies were carried out principally at the University of Aveiro, as well as at the University of Montpellier II and at the Seoul National University due to complementary available expertises and equipments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.