974 resultados para soil water dynamics
Resumo:
Soil properties that influence water movement through profiles are important for determining flow paths, reactions between soil and solute, and the ultimate destination of solutes. This is particularly important in high rainfall environments. For highly weathered deep profiles, we hypothesize that abrupt changes in the distribution of the quotient [QT = (silt + sand)/clay] reflect the boundaries between textural units or textural (TS) and hydrologic (HS) stratigraphies. As a result, QT can be used as a parameter to characterize TS and as a surrogate for HS. Secondly, we propose that if chloride distributions were correlated with QT, under non-limiting anion exchange, then chloride distributions can be used as a signature indicator of TS and HS. Soil cores to a depth of 12.5 in were taken from 16 locations in the wet tropical Johnstone River catchment of northeast Queensland, Australia. The cores belong to nine variable charge soil types and were under sugarcane (Saccharun officinarum-S) production, which included the use of potassium chloride, for several decades. The cores were segmented at I m depth increments and subsamples were analysed for chloride, pH, soil water content (theta), clay, silt and sand contents. Selected bores were capped to serve as piezometers to monitor groundwater dynamics. Depth incremented QT, theta and chloride correlated, each individually, significantly with the corresponding profile depth increments, indicating the presence of textural, hydrologic and chloride gradients in profiles. However, rapid increases in QT down the profile indicated abrupt changes in TS, suggesting that QT can be used as a parameter to characterize TS and as a surrogate for HS. Abrupt changes in chloride distributions were similar to QT, suggesting that chloride distributions can be used as a signature indicator of QT (TS) and HS. Groundwater data indicated that chloride distributions depended, at least partially, on groundwater dynamics, providing further support to our hypothesis that chloride distribution can be used as a signature indicator of HS. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The development of TDR for measurement of soil water content and electrical conductivity has resulted in a large shift in measurement methods for a breadth of soil and hydrological characterization efforts. TDR has also opened new possibilities for soil and plant research. Five examples show how TDR has enhanced our ability to conduct our soil- and plant-water research. (i) Oxygen is necessary for healthy root growth and plant development but quantitative evaluation of the factors controlling oxygen supply in soil depends on knowledge of the soil water content by TDR. With water content information we have modeled successfully some impact of tillage methods on oxygen supply to roots and their growth response. (ii) For field assessment of soil mechanical properties influencing crop growth, water content capability was added to two portable soil strength measuring devices; (a) A TDT (Time Domain Transmittivity)-equipped soil cone penetrometer was used to evaluate seasonal soil strengthwater content relationships. In conventional tillage systems the relationships are dynamic and achieve the more stable no-tillage relationships only relatively late in each growing season; (b) A small TDR transmission line was added to a modified sheargraph that allowed shear strength and water content to be measured simultaneously on the same sample. In addition, the conventional graphing procedure for data acquisition was converted to datalogging using strain gauges. Data acquisition rate was improved by more than a factor of three with improved data quality. (iii) How do drought tolerant plants maintain leaf water content? Non-destructive measurement of TDR water content using a flat serpentine triple wire transmission line replaces more lengthy procedures of measuring relative water content. Two challenges remain: drought-stressed leaves alter salt content, changing electrical conductivity, and drought induced changes in leaf morphology affect TDR measurements. (iv) Remote radar signals are reflected from within the first 2 cm of soil. Appropriate calibration of radar imaging for soil water content can be achieved by a parallel pair of blades separated by 8 cm, reaching 1.7 cm into soil and forming a 20 cm TDR transmission line. The correlation between apparent relative permittivity from TDR and synthetic aperture radar (SAR) backscatter coefficient was 0.57 from an airborne flyover. These five examples highlight the diversity in the application of TDR in soil and plant research.
Resumo:
Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced pre- and post-harvest burning of crop residues in the Australian sugar industry. Since its introduction around 25 years ago, residue retention has increased soil organic matter to improve soil fertility as well as improve harvest flexibility and reduce erosion. However, in the wet tropics residue retention also poses potential problems of prolonged waterlogging, and late-season release of nitrogen which can reduce sugar content of the crop. The objective of this project is to examine the management of sugarcane residues in the wet tropics using a systems approach. Subsidiary objectives are (a) to improve understanding of nitrogen cycling in Australian sugarcane soils in the wet tropics, and (b) to identify ways to manage crop residues to retain their advantages and limit their disadvantages. Project objectives will be addressed using several approaches. Historic farm production data recorded by sugar mills in the wet tropics will be analysed to determine the effect of residue burning or retention on crop yield and sugar content. The impact of climate on soil processes will be highlighed by development of an index of nitrogen mineralisation using the Agricultural Production Systems Simulator (APSIM) model. Increased understanding of nitrogen cycling in Australian sugarcane soils and management of crop residues will be gained through a field experiment recently established in the Australian wet tropics. From this experiment the decomposition and nitrogen dynamics of residues placed on the soil surface and incorporated will be compared. The effect of differences in temperature, soil water content and pH will be further examined on these soils under glasshouse conditions. Preliminary results show a high ammonium to nitrate ratio in tropics soils, which may be due to low rates of nitrification that increase the retention of nitrogen in a form (ammonium) that is less subject to leaching. Further results will be presented at Congress.
Resumo:
We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.
Resumo:
Peer reviewed
Resumo:
Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.
The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.
I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.
I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.
Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.
In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Resumo:
The water stored in and flowing through the subsurface is fundamental for sustaining human activities and needs, feeding water and its constituents to surface water bodies and supporting the functioning of their ecosystems. Quantifying the changes that affect the subsurface water is crucial for our understanding of its dynamics and changes driven by climate change and other changes in the landscape, such as in land-use and water-use. It is inherently difficult to directly measure soil moisture and groundwater levels over large spatial scales and long times. Models are therefore needed to capture the soil moisture and groundwater level dynamics over such large spatiotemporal scales. This thesis develops a modeling framework that allows for long-term catchment-scale screening of soil moisture and groundwater level changes. The novelty in this development resides in an explicit link drawn between catchment-scale hydroclimatic and soil hydraulics conditions, using observed runoff data as an approximation of soil water flux and accounting for the effects of snow storage-melting dynamics on that flux. Both past and future relative changes can be assessed by use of this modeling framework, with future change projections based on common climate model outputs. By direct model-observation comparison, the thesis shows that the developed modeling framework can reproduce the temporal variability of large-scale changes in soil water storage, as obtained from the GRACE satellite product, for most of 25 large study catchments around the world. Also compared with locally measured soil water content and groundwater level in 10 U.S. catchments, the modeling approach can reasonably well reproduce relative seasonal fluctuations around long-term average values. The developed modeling framework is further used to project soil moisture changes due to expected future climate change for 81 catchments around the world. The future soil moisture changes depend on the considered radiative forcing scenario (RCP) but are overall large for the occurrence frequency of dry and wet events and the inter-annual variability of seasonal soil moisture. These changes tend to be higher for the dry events and the dry season, respectively, than for the corresponding wet quantities, indicating increased drought risk for some parts of the world.
Resumo:
Black carbon (BC), the incomplete combustion product from biomass and fossil fuel burning, is ubiquitously found in soils, sediments, ice, water and atmosphere. Because of its polyaromatic molecular characteristic, BC is believed to contribute significantly to the global carbon budget as a slow-cycling, refractory carbon pool. However, the mass balance between global BC generation and accumulation does not match, suggesting a removal mechanism of BC to the active carbon pool, most probable in a dissolved form. The presence of BC in waters as part of the dissolved organic matter (DOM) pool was recently confirmed via ultrahigh resolution mass spectrometry, and dissolved black carbon (DBC), a degradation product of charcoal, was found in marine and coastal environments. However, information on the loadings of DBC in freshwater environments and its global riverine flux from terrestrial systems to the oceans remained unclear. The main objectives of this study were to quantify DBC in diverse aquatic ecosystems and to determine its environmental dynamics. Surface water samples were collected from aquatic environments with a spatially significant global distribution, and DBC concentrations were determined by a chemical oxidation method coupled with HPLC detection. While it was clear that biomass burning was the main sources of BC, the translocation mechanism of BC to the dissolved phase was not well understood. Data from the regional studies and the developed global model revealed a strong positive correlation between DBC and dissolved organic carbon (DOC) dynamics, indicating a co-generation and co-translocation between soil OC and BC. In addition, a DOC-assistant DBC translocation mechanism was identified. Taking advantage of the DOC-DBC correlation model, a global riverine DBC flux to oceans on the order of 26.5 Mt C yr-1 (1 Mt = 1012 g) was determined, accounting for 10.6% of the global DOC flux. The results not only indicated that DOC was an important environmental intermediate for BC transfer and storage, but also provided an estimate of a major missing link in the global BC budget. The ever increasing DBC export caused by global warming will change the marine DOM quality and may have important consequences for carbon cycling in marine ecosystem.
Resumo:
Silvo-pastoral are mixed systems of trees and grass, which have been proposed as a means to extend the benefits of forest to farmed land. Agro-forestry systems under semi-arid Mediterranean conditions, called montados in Portugal and dehesas in Spain, cover substantial areas in the world. These silvo-pastoral systems are the most extensive European agro-forestry system, as they cover 3.5–4.0 Mha in Spain and Portugal. Long-term studies are essential to assess the magnitude of the temporal nutrient flow dynamics in terrestrial ecosystems and to understand the response of these systems to fertilizer management. In order to implement the conservation task and recovery of resources through silvo-pastoral systems it is necessary to know and correct potential limiting factors, especially the soil factor, and this requires agronomic knowledge as well as the implmentation of the available new technologies. In this context, this task aims at a better understanding of the contribution of the two components of montado ecosystem (trees and herbaceous vegetation) on the soil nutrient and water dynamics, that allow for the interpretation of the variability of pasture dry matter yield and help the farmer in the management of tree density. Collaterally the task will evaluate and calibrate new technologies that simplify the monitoring of soil, grassland, trees and grazing animals.
Resumo:
The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
The use of the Boltzmann transform function, lambda(theta), to solve the Richards equation when the diffusivity, D, is a function of only soil water content,., is now commonplace in the literature. Nevertheless, a new analytic solution of the Boltzmann transform lambda(h) as a function of matric potential for horizontal water infiltration into a sand was derived without invoking the concept or use of D(theta). The derivation assumes that a similarity exists between the soil water retention function and the Boltzmann transform lambda(theta). The solution successfully described soil water content profiles experimentally measured for different infiltration times into a homogeneous sand and agrees with those presented by Philip in 1955 and 1957. The applicability of this solution for all soils remains open, but it is anticipated to hold for soils whose air-filled pore-size distribution before wetting is sufficiently narrow to yield a sharp increase of water content at the wetting front during infiltration. It also improves and provides a versatile alternative to the well-known analysis pioneered by Green and Ampt in 1911.
Resumo:
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential Pupal stage duration in C capitata was influenced differently for males and females In females, only soil type affected pupal stage duration, which was longer in a clay soil In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil As allude potential decreased, duration of the pupal stage of C capitata males increased, regardless of soil type C capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils The emergence of D longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil Always, the number of emerged adults was higher at higher moisture conditions C capitata and D longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.