946 resultados para single-wave function
Resumo:
The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.
Resumo:
The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.
Resumo:
The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.
Resumo:
The deuteron binding energy and wave function are calculated by using the recently developed three-dimensional form of low-momentum nucleon-nucleon (NN) interaction. The homogeneous Lippmann-Schwinger equation is solved in momentum space by using the low-momentum two-body interaction, which is constructed from Malfliet-Tjon potential. The results for both, deuteron binding energy and wave function, obtained with low-momentum interaction, are compared with the corresponding results obtained with bare potential. © 2012 Springer-Verlag.
Resumo:
We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections. © 2012 Springer-Verlag.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho nos propomos a fazer um estudo acerca da potencialidade de condução eletrônica no polímero BDT (1,3-benzoditiol 4H-ciclopenta[2,1-b:3,4b’]). O estudo usual de polímeros conjugados é feito de modo a obter sua densidade de estados com diversos tipos e níveis de dopagem. O método de Huckel é o mais utilizado e se baseia na separabilidade das ligações sigma e pi que é possível quando a molécula estudada é plana. Os polímeros conjugados são em sua maioria planos e estão inseridos nesta aproximação. O monômero do BDT apresenta sua geometria fora do plano por apresentar ligações com orbitais sp3. Para contornar esse problema foi desenvolvido o programa B3J, que considera todos os orbitais de valencia (s, px, py e pz). O programa B3J calcula a densidade de estados de sistemas poliméricos. O estudo das bandas do BDT foi feito com este software. Calculamos a densidade de estados do sistema neutro e com diversos níveis de dopagem, com distribuição aleatória e ordenada dos defeitos, dopagem do tipo n e do tipo p. O comportamento do quadrado do coeficiente da expansão da função de onda foi obtido para polímeros de até 20 monômeros. Estes cálculos foram obtidos com geometrias dos métodos AM1 e PM3. Obtivemos os espectros de absorção de oligômeros a fim de inferir seu comportamento para um polímero. Foram utilizados cálculos de otimização de geometria através dos métodos semi-empíricos AM1 e PM3 e ZINDO/S e o método DFT. Em outro objetivo desta monografia há o estudo do aproveitamento de tetrâmeros de BDT como dispositivos eletrônicos. Tais oligômeros foram otimizados em diversos valores de potencial elétrico, com a inserção em suas cadeias de moléculas doadoras e aceitadoras para induzir um aumento no momento de dipolo da mesma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work the scattering of a fermion in the modified Hulthen potential is considered with a general vector and scalar and we solved the Dirac equation in the one-dimensional space. The transmission and reflection coefficients are reported. The bound-state solution is also given. The study shows the asymptotic behavior of the wave function in bound-state and scattering states solutions.
Resumo:
Griffiths proposed a pair of boundary conditions that define a point interaction in one dimensional quantum mechanics. The conditions involve the nth derivative of the wave function where n is a non-negative integer. We re-examine the interaction so defined and explicitly confirm that it is self-adjoint for any even value of n and for n = 1. The interaction is not self-adjoint for odd n > 1. We then propose a similar but different pair of boundary conditions with the nth derivative of the wave function such that the ensuing point interaction is self-adjoint for any value of n.