692 resultados para silicone hydrogel contact lenses
Resumo:
Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.
Resumo:
The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.
Resumo:
Tear component deposition onto contact lenses is termed `spoilation' and occurs due to the interaction of synthetic polymers with their biological fluid environment. Spoilation phenomena alter the physico-chemical properties of hydrophilic contact lenses, diminishing the optical properties of the lens; causing discomfort and complications for the wearer. Eventually these alterations render the lens unwearable. The primary aim of this interdisciplinary study was to develop analytical techniques capable of analysing the minute quantities of biological deposition involved, in particular the lipid fraction. Prior to this work such techniques were unavailable for single contact lenses. It is envisaged that these investigations will further the understanding of this biological interfacial conversion. Two main analytical techniques were developed: a high performance liquid chromatography (HPLC) technique and fluorescence spectrofluorimetry. The HPLC method allows analysis of a single contact lens and provided previously unavailable valuable information about variations in the lipid profiles of deposited contact lenses and patient tear films. Fluorescence spectrophotofluorimetry is a sensitive non-destructive technique for observing changes in the fluorescence intensity of biological components on contact lenses. The progression and deposition of tear materials can be monitored and assessed for both in vivo and in vitro spoiled lenses using this technique. An improved in vitro model which is comparable to tears and chemically mimics ocular spoilation was also developed. This model allows the controlled study of extrinsic factors and hydrogel compositions. These studies show that unsaturated tear lipids, probably unsaturated fatty acids, are involved in the interfacial conversion of hydrogel lenses, rendering them incompatible with the ocular microenvironment. Lipid interaction with the lens surface then facilitates secondary deposition of other tear components. Interaction, exchange and immobilisation (by polymerisation) of the lipid layer appears to occur before the final and rapid growth of more complex, insoluble discrete deposits, sometimes called `white spots'.
Resumo:
Soft contact lens wear has become a common phenomenon in recent times. The contact lens when placed in the eye rapidly undergoes change. A film of biological material builds up on and in the lens matrix. The long term wear characteristics of the lens ultimately depend on this process. With time distinct structures made up of biological material have been found to build up on the lens. A fuller understanding of this process and how it relates to the lens chemistry could lead to contact lenses that are better tolerated by the eye. The tear film is a complex biological fluid, it is this fluid that bathes the lens during wear. It is reasonable to suppose that it is material derived from this source that accumulates on the lens. To understand this phenomenon it was decided to investigate the make up and conformation of the protein species that are found on and in the lens. As inter individual variations in tear fluid composition have been found it is important to be able to study the proteins on a single lens. Many of the analytical techniques used in bio research are not suitable for this study because of the lack of sensitivity. Work with poly acrylamide electrophoresis showed the possibility of analyzing the proteins extracted from a single lens. The development of a biotin avidin electro-blot and an enzyme linked aniibody electro-blot, lead to the high sensitivity detection and identification of the proteins present. The extraction of proteins from a lens is always incomplete. A method that analyses the proteins in situ would be a great advancement. Fourier transform infra red microscopy was developed to a point where a thin section of a contact lens could yield information about the proteins present and their conformation. The three dimensional structure of the gross macroscopic structures termed white spots was investigated using confocal laser microscopy.
Resumo:
Purpose. To compare visual function with the Bausch & Lomb PureVision multifocal contact lens to monovision with PureVision single vision contact lenses. Methods. Twenty presbyopic subjects were fitted with either the PureVision multifocal contact lens or monovision with PureVision singlevision lenses. Aftera 1-month trial, the following assessments of visual function were made: (a) distance, intermediate, and near visual acuity (VA); (b) reading ability; (c) distance and near contrast sensitivity function (CSF); (d) near range of clear vision; (e) stereoacuity; and (f) subjective evaluation of near vision ability with a standardized questionnaire. Subjects were then refitted with the alternative correction and the procedure was repeated. All measurements were compared between the two corrections, whereas the ``low addition'' multifocal lens was also compared with the ``high addition'' alternative. Results. Distance and near VA were significantly better with monovision than with the multifocal option (p < 0.05). Intermediate VA (p = 0.13) was similar with both corrections, whereas there was also no significant difference in distance and near CSF (p = 0.29 on both occasions). Reading speeds (p = 0.48) and the critical print size (p = 0.90) were not significantly different between the two contact lens corrections, but stereoacuity (p < 0.01) and the near range of clear vision (p < 0.05) were significantly better with the multifocal option than with monovision. Subjective assessment of near ability was similar for both types of contact lens (p = 0.52). The high addition multifocal lens produced significantly poorer distance and near CSF, near VA, and critical print size compared with the low addition alternative. Conclusions. Monovision performed better than a center-near aspheric simultaneous vision multifocal contact lens of the same material for distance and near VA only. The multifocal option provides better stereoacuity and near range of clear vision, with little differences in CSF, so a better balance of real-world visual function may be achieved due to minimal binocular disruption. (Optom Vis Sci 2009;86:98-105)
Resumo:
The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.
Resumo:
The limbal vascular response to extended contact lens wear was examined in a group comparative study initially intended to last eighteen months. After six months all patients wearing contact lenses had presented with micro-epithelial cysts. This unanticipated occurrence of the micro-epithelial-cysts necessitated termination of the study, and limited the quantity of data collected. However, sufficient results were available to allow a limited description of •the vascular response to this form of contact lens wear. Interpretations of the date collected ore discussed in relation to suggested vasostimulating factors in the cornea. The micro-epithelial cysts observed after extended wear were classified and their rate of recovery recorded. A further clinical study was undertaken to observe cysts in both contact lens - and non contact lens-wearing eyes. Cysts were observed in every category of patient, although the characteristic patterns varied. These observations of micro-epithelial cysts are discussed with respect to the aetiopathogeneses of corneal epithelial cystic disorders. Subsequently, attempts were made to induce cysts in rabbit corneae by extended contact lens wear. Clinical observations revealed cyst-like appearances. Histological sections did not contain cysts but did exhibit signs characteristic •of cystic disorders of the corneal epithelium. In general, the results from the study indicate that extended wear is subjectively acceptable to contact lens wearers. However, the objective findings of significant vascular changes, micro-epithelial cysts and cases of acute red eye response cast considerable doubt on the recommendation of extended wear contact lenses for purely cosmetic applications.
Resumo:
This thesis is concerned with the use of ionic and neutral hydrogels in dermal and ocular applications with particular reference to controlled release applications. The work consists of three interconnected themes.The first area of study is the use of skin adhesive bioelectrode hydrogels as ground plate electrodes for ophthalmic iontophoresis applications. The work provides a basis of understanding the relative contributions made by ionic monomers (such as sodium s-(acrylamide)-2-methyl propane sulphonate and acrylic acid-bis-(3-sulfopropyl-ester, potassium salt) and neutral monomers (such as acryloymorpholine, N,N-dimethylacrylamide and N-vinyl pyrrolidone) to adhesion, rheology and impedance of bioelectrode gels. The general advantage of neutral monomers, which have been used to successfully replace ionic monomers, is that they enable more effective control of independent anion and cation species (for example potassium chloride and sodium chloride) unlike ionic monomers where polymerisation produces an immobile polyanion thus limiting cation mobility. Secondly, release from a completely neutral hydrogel under the influence of mechanical shaking was studied for the case of crosslinked polyvinyl alcohol (PVA) containing low concentration of linear soluble PVA in a contact lens application. The soluble PVA was observed to be eluting by reptation from the lens matrix due to the mechanical action of the eyelid. This process was studied in an in vitro model, which in this research was used as a basis for developing a lens made with enhanced release polymer. The third area of work is related to the factors that control drug release (in particular non-steroidal anti-inflammatory drugs) from a hydrogel matrix. This links both electrotherapy applications, such as transcutaneous electrical nerve stimulation, in which the passive diffusion from the gel could be used in conjunction with enhanced transmission across the dermal surface with passive diffusion from a contact lens matrix and the development of therapeutic contact lenses.
Resumo:
FULL TEXT: Like many people one of my favourite pastimes over the holiday season is to watch the great movies that are offered on the television channels and new releases in the movie theatres or catching up on those DVDs that you have been wanting to watch all year. Recently we had the new ‘Star Wars’ movie, ‘The Force Awakens’, which is reckoned to become the highest grossing movie of all time, and the latest offering from James Bond, ‘Spectre’ (which included, for the car aficionados amongst you, the gorgeous new Aston Martin DB10). It is always amusing to see how vision correction or eye injury is dealt with by movie makers. Spy movies and science fiction movies have a freehand to design aliens with multiples eyes on stalks or retina scanning door locks or goggles that can see through walls. Eye surgery is usually shown in some kind of day case simplified laser treatment that gives instant results, apart from the great scene in the original ‘Terminator’ movie where Arnold Schwarzenegger's android character encounters an injury to one eye and then proceeds to remove the humanoid covering to this mechanical eye over a bathroom sink. I suppose it is much more difficult to try and include contact lenses in such movies. Although you may recall the film ‘Charlie's Angels’, which did have a scene where one of the Angels wore a contact lens that had a retinal image imprinted on it so she could by-pass a retinal scan door lock and an Eddy Murphy spy movie ‘I-Spy’, where he wore contact lenses that had electronic gadgetry that allowed whatever he was looking at to be beamed back to someone else, a kind of remote video camera device. Maybe we aren’t quite there in terms of devices available but these things are probably not the behest of science fiction anymore as the technology does exist to put these things together. The technology to incorporate electronics into contact lenses is being developed and I am sure we will be reporting on it in the near future. In the meantime we can continue to enjoy the unrealistic scenes of eye swapping as in the film ‘Minority Report’ (with Tom Cruise). Much more closely to home, than in a galaxy far far away, in this issue you can find articles on topics much nearer to the closer future. More and more optometrists in the UK are becoming registered for therapeutic work as independent prescribers and the number is likely to rise in the near future. These practitioners will be interested in the review paper by Michael Doughty, who is a member of the CLAE editorial panel (soon to be renamed the Jedi Council!), on prescribing drugs as part of the management of chronic meibomian gland dysfunction. Contact lenses play an active role in myopia control and orthokeratology has been used not only to help provide refractive correction but also in the retardation of myopia. In this issue there are three articles related to this topic. Firstly, an excellent paper looking at the link between higher spherical equivalent refractive errors and the association with slower axial elongation. Secondly, a paper that discusses the effectiveness and safety of overnight orthokeratology with high-permeability lens material. Finally, a paper that looks at the stabilisation of early adult-onset myopia. Whilst we are always eager for new and exciting developments in contact lenses and related instrumentation in this issue of CLAE there is a demonstration of a novel and practical use of a smartphone to assisted anterior segment imaging and suggestions of this may be used in telemedicine. It is not hard to imagine someone taking an image remotely and transmitting that back to a central diagnostic centre with the relevant expertise housed in one place where the information can be interpreted and instruction given back to the remote site. Back to ‘Star Wars’ and you will recall in the film ‘The Phantom Menace’ when Qui-Gon Jinn first meets Anakin Skywalker on Tatooine he takes a sample of his blood and sends a scan of it back to Obi-Wan Kenobi to send for analysis and they find that the boy has the highest midichlorian count ever seen. On behalf of the CLAE Editorial board (or Jedi Council) and the BCLA Council (the Senate of the Republic) we wish for you a great 2016 and ‘may the contact lens force be with you’. Or let me put that another way ‘the CLAE Editorial Board and BCLA Council, on behalf of, a great 2016, we wish for you!’
Resumo:
Premium intraocular lenses (IOLs) aim to surgically correct astigmatism and presbyopia following cataract extraction, optimising vision and eliminating the need for cataract surgery in later years. It is usual to fully correct astigmatism and to provide visual correction for distance and near when prescribing spectacles and contact lenses, however for correction with the lens implanted during cataract surgery, patients are required to purchase the premium IOLs and pay surgery fees outside the National Health Service in the UK. The benefit of using toric IOLs was thus demonstrated, both in standard visual tests and real-world situations. Orientation of toric IOLs during implantation is critical and the benefit of using conjunctival blood vessels for alignment was shown. The issue of centration of IOLs relative to the pupil was also investigated, showing changes with the amount of dilation and repeat dilation evaluation, which must be considered during surgery to optimize the visual performance of premium IOLs. Presbyopia is a global issue, of growing importance as life expectancy increases, with no real long-term cure. Despite enhanced lifestyles, changes in diet and improved medical care, presbyopia still presents in modern life as a significant visual impairment. The onset of presbyopia was found to vary with risk factors including alcohol consumption, smoking, UV exposure and even weight as well as age. A new technique to make measurement of accommodation more objective and robust was explored, although needs for further design modifications were identified. Due to dysphotopsia and lack of intermediate vision through most multifocal IOL designs, the development of a trifocal IOL was shown to minimize these aspects. The current thesis, therefore, emphasises the challenges of premium IOL surgery and need for refinement for optimum visual outcome in addition to outlining how premium IOLs may provide long-term and successful correction of astigmatism and presbyopia.
Resumo:
Approximately half of current contact lens wearers suffer from dryness and discomfort, particularly towards the end of the day. Contact lens practitioners have a number of dry eye tests available to help them to predict which of their patients may be at risk of contact lens drop out and advise them accordingly. This thesis set out to rationalize them to see if any are of more diagnostic significance than others. This doctorate has found: (1) The Keratograph, a device which permits an automated, examiner independent technique for measuring non invasive tear break up time (NITBUT) measured NITBUT consistently shorter than measurements recorded with the Tearscope. When measuring central corneal curvature the spherical equivalent power of the cornea was measured as being significantly flatter than with a validated automated keratometer. (2) Non-invasive and invasive tear break-up times significantly correlated to each other, but not the other tear metrics. Symptomology, assessed using the OSDI questionnaire, correlated more with those tests indicating possible damage to the ocular surface (including LWE, LIPCOF and conjunctival staining) than with tests of either tear volume or stability. Cluster analysis showed some statistically significant groups of patients with different sign and symptom profiles. The largest cluster demonstrated poor tear quality with both non-invasive and invasive tests, low tear volume and more symptoms. (3) Care should be taken in fitting patients new to contact lenses if they have a NITBUT less than 10s or an OSDI comfort rating greater than 4.2 as they are more likely to drop-out within the first 6 months. Cluster analysis was not found to be beneficial in predicting which patients will succeed with lenses and which will not. A combination of the OSDI questionnaire and a NITBUT measurement was most useful both in diagnosing dry eye and in predicting contact lens drop out.
Resumo:
I was recently part of a small committee looking at higher qualifications in contact lens practice and the discussion turned to future technologies. There was mention of different materials and different applications of contact lenses. Drug delivery with contact lenses was discussed as this has been talked about in the literature for a while. The first paper I could find that talked about using contact lenses for drug delivery dates back over 40 years. There was a review paper in CLAE in 2008 that looked specifically at this too [1]. However, where are these products? Why are we not seeing them in the market place? Maybe the technology is not quite there yet, or maybe patents are prohibiting usage or maybe the market is not big enough to develop such products? We do have lenses on the market with slow release of lubricating agents but not therapeutic agents used for ocular or systemic conditions. Contact lenses with pathogen detectors may be part of our contact lens armoury of the future and again we can already see papers in the literature that have trialled this technology for glucose monitoring in diabetics or lactate concentration in the tear film. Future contact lenses may incorporate better optics based on aberration control and we see this starting to emerge with aspheric designs designed to minimise spherical aberration. Irregular corneas can be fitted with topography based designs and again this technology exists and is being used by some manufacturers in their designs already. Moreover, the topography based fitting of irregular corneas is certainly something we see a lot of today and CLAE has seen many articles related to this over the last decade or so. What about further into the future? Well one interesting area must the 3-dimensional contact lenses, or contact lenses with electronic devices built in that simulate a display screen. A little like the virtual display spectacles that are already sold by electronics companies. It does not take much of a stretch of the imagination to see a large electronic company taking this technology on and making it viable. Will we see people on the train watching movies on these electronic virtual reality contact lenses? I think we will, but when is harder to know.
Resumo:
Purpose. We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Methods. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). Results. The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Conclusions. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort. © 2014 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Background: Optometric practices offer contact lenses as cash sale items or as part of monthly payment plans. With the contact lens market becoming increasingly competitive, patients are opting to purchase lenses from supermarkets and Internet suppliers. Monthly payment plans are often implemented to improve loyalty. This study aimed to compare behavioural loyalty between monthly payment plan members and non-members. Methods: BBR Optometry Ltd offers a monthly payment plan (Eyelife™) to their contact lens wearers. A retrospective audit of 38 Eyelife™ members (mean. ±. SD: 42.7. ±. 15.0 years) and 30 non-members (mean. ±. SD: 40.8. ±. 16.7 years) was conducted. Revenue and profits generated, service uptake and product sales between the two groups were compared over a fixed period of 18 months. Results: Eyelife™ members generated significantly higher professional fee revenue ( P<. 0.001), £153.96 compared to £83.50, and profits ( P<. 0.001). Eyelife™ members had a higher uptake of eye examinations ( P<. 0.001). The 2 groups demonstrated no significant difference in spectacle sales by volume ( P= 0.790) or value ( P= 0.369). There were also no significant differences in contact lens revenue ( P= 0.337), although Eyelife™ members did receive a discount. The Eyelife™ group incurred higher contact lens costs ( P= 0.037), due to a greater volume of contact lens purchases, 986 units compared to 582. Conclusions: Monthly payment plans improve loyalty among contact lens wearers, particularly service uptake and volume of lens purchases. Additionally the greater professional fees generated, render monthly payment plans an attractive business model and practice builder.
Resumo:
As we welcome 2014 we say goodbye to 2013 and I must start with an apology to authors who have submitted papers to CLAE and seen a delay in either the review process or the hard copy publication of their proofed article. The delays were caused by a major hike in the number of submissions to the journal in 2012 that increased further in 2013. In the 12 months leading to the end of October 2011 we had 94 new paper submissions, and for the same period to the end of 2012 the journal had 116 new papers. In 2012 we were awarded an impact factor for the first time and following that the next 12 month period to the end of October 2013 saw a massive increase in submissions with 171 new manuscripts being submitted. This is nearly twice as many papers as 2 years ago and 3 times as many as when I took over as Editor-in-Chief. In addition to this the UK academics will know that 2014 is a REF year (Research Excellence Framework) where universities are judged on their research and one of the major components of this measure remains to be published papers so there is a push to publishing before the REF deadline for counting. The rejection rate at CLAE has gone up too and currently is around 50% (more than double the rejection rate when I took over as Editor-in-Chief). At CLAE the number of pages that we publish each year has remained the same since 2007. When compiling issue 1 for 2014 I chose the papers to be included from the papers that were proofed and ready to go and there were around 200 proofed pages ready, which is enough to fill 3½ issues! At present Elsevier and the BCLA are preparing to increase the number the pages published per issue so that we can clear some of this backlog and remain up to date with the papers published in CLAE. I should add that on line publishing of papers is still available and there may have been review delays but there are no publishing online so authors can still get an epub on line final version of their paper with a DOI (digital object identifier) number enabling the paper to be cited. There are two awards that were made in 2013 that I would like to make special mention of. One was for my good friend Jan Bergmanson, who was awarded an honorary life fellowship of the College of Optometrists. Jan has served on the editorial board of CLAE for many years and in 2013 also celebrated 30 years of his annual ‘Texan Corneal and contact lens meeting’. The other award I wish to mention is Judith Morris, who was the BCLA Gold Medal Award winner in 2013. Judith has had many roles in her career and worked at Moorfields Eye Hospital, the Institute of Optometry and currently at City University. She has been the Europe Middle East and Africa President of IACLE (International Association of Contact Lens Educators) for many years and I think I am correct in saying that Judith is the only person who was President of both the BCLA (1983) and a few years later she was the President College of Optometrists (1989). Judith was also instrumental in introducing Vivien Freeman to the BCLA as they had been friends and Judith suggested that Vivien apply for an administrative job at the BCLA. Fast forward 29 years and in December 2013 Vivien stepped down as Secretary General of the BCLA. I would like to offer my own personal thanks to Vivien for her support of CLAE and of me over the years. The BCLA will not be the same and I wish you well in your future plans. But 2014 brings in a new position to the BCLA – Cheryl Donnelly has been given the new role of Chief Executive Officer. Cheryl was President of the BCLA in 2000 and has previously served on council. I look forward to working with Cheryl and envisage a bright future for the BCLA and CLAE. In this issue we have some great papers including some from authors who have not published with CLAE before. There is a nice paper on contact lens compliance in Nepal which brings home some familiar messages from an emerging market. A paper on how corneal curvature is affected by the use of hydrogel lenses is useful when advising patients how long they should leave their contact lenses out for to avoid seeing changes in refraction or curvature. This is useful information when refracting these patients or pre-laser surgery. There is a useful paper offering tips on fitting bitoric gas permeable lenses post corneal graft and a paper detailing surgery to implant piggyback multifocal intraocular lenses. One fact that I noted from the selection of papers in the current issue is where they were from. In this issue none of the corresponding authors are from the United Kingdom. There are two papers each from the United States, Spain and Iran, and one each from the Netherlands, Ireland, Republic of Korea, Australia and Hong Kong. This is an obvious reflection of the widening interest in CLAE and the BCLA and indicates the new research groups emerging in the field.