421 resultados para semicystic spermatogenesis
Resumo:
The spermiogenesis process in Wardula capitellata begins with the formation of a differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. Each centriole develops into a free flagellum orthogonal to a median cytoplasmic process. Later these flagella rotate and become parallel to the median cytoplasmic process, which already exhibits two electron-dense areas and spinelike bodies before its proximodistal fusion with the flagella. The final stage of the spermiogenesis is characterized by the constriction of the ring of arched membranes, giving rise to the young spermatozoon, which detaches from the residual cytoplasm. The mature spermatozoon of W. capitellata presents most of the classical characters reported in digenean spermatozoa such as two axonemes of different lengths of the 9 + '1' trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as two lateral expansions accompanied by external ornamentation of the plasma membrane and spinelike bodies characterize the mature sperm. Moreover, a new spermatological character is described for the first time, the so-called cytoplasmic ornamented buttons.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
Spermiogenesis in Molluscotaenia crassiscolex begins with the formation of a differentiation zone containing two centrioles. One of the centrioles develops a flagellum directly into the cytoplasmic extension. The nucleus elongates and later migrates along the spermatid body. During advanced stages of spermiogenesis, a periaxonemal sheath appears in the spermatid. Spermiogenesis finishes with the appearance of a single helicoidal crested body at the base of the spermatid and, finally, the narrowing of the ring of arched membranes causes the detachment of the fully formed spermatozoon. The mature spermatozoon of M. crassiscolex exhibits a partially detached crested body in the anterior region of the spermatozoon, one axoneme, twisted cortical microtubules, a periaxonemal sheath, and a spiralled nucleus. The anterior spermatozoon extremity is characterized by the presence of an electron-dense apical cone and a single spiralled crested body, which is attached to the sperm cell in the anterior and posterior areas of region I, whereas in the middle area it is partially detached from the cell. This crested body is described for the first time in cestodes. The posterior extremity of the male gamete exhibits only the disorganizing axoneme. Results are discussed and compared particularly with the available ultrastructural data on dilepidids sensu lato.
Resumo:
Spermiogenesis and the ultrastructural characters of the spermatozoon of Echinobothrium euterpes are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a common guitarfish Rhinobatos rhinobatos caught in the Gulf of Gabès (Tunisia). Spermiogenesis in E. euterpes is characterized by the orthogonal development of two unequal flagella followed by the flagellar rotation and the proximodistal fusion of these flagella with the median cytoplasmic process. The most interesting pattern characterizing the diphyllidean cestodes is the presence of a triangular body constituted by fines and dense granules without visible striation and assimilated at the striated rootlets. This pattern, only related in the Diphyllidea cestodes may be a synapomorphy of this order. Spermiogenesis is also characterized by the presence of a very short flagellum (around 1 μm long), observed in all the stages of spermiogenesis. This type of flagellum has never been commented in the diphyllidean cestodes and should be considered as an evolved character in this group. In the latest stage of spermiogenesis, this short axoneme probably degenerates. Thus, the mature spermatozoon of E. euterpes possesses only one axoneme of 9 + '1' trepaxonematan pattern. It also exhibits a single helical electron-dense crested body, a spiraled nucleus, few parallel cortical microtubules, and α-glycogen granules. Similitudes and differences between spermatozoa of diphyllideans are discussed.
Resumo:
Spermiogenesis and the ultrastructural characters of the spermatozoon of Echinobothrium euterpes are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a common guitarfish Rhinobatos rhinobatos caught in the Gulf of Gabès (Tunisia). Spermiogenesis in E. euterpes is characterized by the orthogonal development of two unequal flagella followed by the flagellar rotation and the proximodistal fusion of these flagella with the median cytoplasmic process. The most interesting pattern characterizing the diphyllidean cestodes is the presence of a triangular body constituted by fines and dense granules without visible striation and assimilated at the striated rootlets. This pattern, only related in the Diphyllidea cestodes may be a synapomorphy of this order. Spermiogenesis is also characterized by the presence of a very short flagellum (around 1 μm long), observed in all the stages of spermiogenesis. This type of flagellum has never been commented in the diphyllidean cestodes and should be considered as an evolved character in this group. In the latest stage of spermiogenesis, this short axoneme probably degenerates. Thus, the mature spermatozoon of E. euterpes possesses only one axoneme of 9 + '1' trepaxonematan pattern. It also exhibits a single helical electron-dense crested body, a spiraled nucleus, few parallel cortical microtubules, and α-glycogen granules. Similitudes and differences between spermatozoa of diphyllideans are discussed.
Resumo:
Hedelmättömyyttä aiheuttavan siittiöiden puolihäntävian molekyyligenetiikka Suomalaisissa Yorkshire karjuissa yleistyi 1990-luvun lopulla autosomaalisesti ja resessiivisesti periytyvä hedelmättömyyttä aiheuttava siittiöiden puolihäntävika (ISTS, immotile short tail sperm). Sairaus aiheuttaa normaalia lyhyemmän ja täysin liikkumattoman siittiön hännän muodostuksen. Muita oireita sairailla karjuilla ei ole havaittu ja emakot ovat oireettomia. Tämän tutkimuksen tarkoituksena oli kartoittaa siittiöiden puolihäntävian aiheuttava geenivirhe ja kehittää DNA-testi markkeri- ja geeniavusteiseen valintaan. Koko genomin kartoituksessa vian aiheuttava alue paikannettiin sian kromosomiin 16. Paikannuksen perusteella kahden geenimerkin haplotyyppi kehitettiin käytettäväksi markkeri-avusteisessa valinnassa. Sairauteen kytkeytyneen alueen hienokartoitusta jatkettiin geenitestin kehittämiseksi kantajadiagnostiikkaan. Vertailevalla kartoituksella oireeseen kytkeytynyt alue paikannettiin 2 cM:n alueelle ihmisen kromosomiin viisi (5p13.2). Tällä alueella sijaitsevia geenejä vastaavista sian sekvensseistä löydetyn muuntelun perusteella voitiin tarkentaa sairauteen kytkeytyneitä haplotyyppejä. Haplotyyppien perusteella puolihäntäoireeseen kytkeytynyt alue rajattiin kahdeksan geenin alueelle ihmisen geenikartalla. Alueelle paikannetun kandidaattigeenin (KPL2) sekvensointi paljasti introniin liittyneen liikkuvan DNA-sekvenssin, Line-1 retroposonin. Tämä retroposoni muuttaa geenin silmikointia siten, että sitä edeltävä eksoni jätetään pois tai myös osa introni- ja inserttisekvenssiä liitetään geenin mRNA tuotteeseen. Molemmissa tapauksissa tuloksena on lyhentynyt KPL2 proteiini. Tähän retroposoni-inserttiin perustuva geenitesti on ollut sianjalostajien käytössä vuodesta 2006. KPL2 geenin ilmenemisen tarkastelu sialla ja hiirellä paljasti useita kudosspesifisiä silmikointimuotoja. KPL2 geenin pitkä muoto ilmenee pääasiassa vain kiveksessä, mikä selittää geenivirheen aiheuttamat erityisesti siittiön kehitykseen liittyvät oireet. KPL2 proteiinin ilmeneminen hiiren siittiön hännän kehityksen aikana ja mahdollinen yhteistoiminta IFT20 proteiinin kanssa viittaavat tehtävään proteiinien kuljetuksessa siittiön häntään. Mahdollisen kuljetustehtävän lisäksi KPL2 saattaa toimia myös siittiön hännän rakenneosana, koska se paikannettiin valmiin siittiön hännän keskiosaan. Lisäksi KPL2 proteiini saattaa myös toimia Golgin laitteessa sekä Sertolin solujen ja spermatidien liitoksissa, mutta nämä havainnot kuitenkin vaativat lisätutkimuksia. Tämän tutkimuksen tulokset osoittavat, että KPL2 geeni on tärkeä siittiön hännän kehitykselle ja sen rakennemuutos aiheuttaa siittiöiden puolihäntäoireen suomalaisilla Yorkshire karjuilla. KPL2 proteiinin ilmeneminen ja paikannus siittiön kehityksen aikana antaa viitteitä proteiinin toiminnasta. Koska KPL2 geenisekvenssi on erittäin konservoitunut, nämä tulokset tuovat uutta tietoa kaikkien nisäkkäiden siittiöiden kehitykseen ja urosten hedelmättömyyteen syihin.
Resumo:
Infertility is a common late effect of childhood cancer treatment. Testicular toxicity can clinically be first detected after the onset of pubertal maturation of the patients when the testis does not grow, spermatogenesis does not initiate and serum levels of gonadotrophins rise. Improved prognosis for childhood cancer has resulted in a growing number of childhood cancer survivors with late effects. In our study, we developed novel tools for detecting cancer therapy-related testicular toxicity during development. By using these methods the effects of the tyrosine kinase inhibitor imatinib mesylate, chemotherapy agent doxorubicin and irradiation on testicular development were investigated in rat and monkey. Patients with chronic myeloid leukemia and some patients with acute lymphoblastic leukemia have fusion gene BCR-ABL which codes for abnormal tyrosine kinase protein. Imatinib mesylate (Glivec®) inhibits activity of this protein. In addition, imatinib inhibits the action of the c-kit and PDGF –receptors, which are both important for the survival and proliferation of the spermatogonial stem cell pool. Imatinib exposure during prepubertal development disturbed the development and the growth of the testis. Spermatogonial stem cells were also sensitive to the toxic effects of doxorubicin and irradiation during the initiation phase of spermatogenesis. In addition, the effect of the treatment of acute lymphoblastic leukemia on germ cell numbers and recovery of reproductive functions after sexual maturation was investigated. Therapy for childhood acute lymphoblastic leukemia seldom results in infertility. The present study gives new information on the mechanisms by which cancer treatments exert their gonadal toxicity in immature testis.
Resumo:
Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.
Resumo:
Spermatogenesis, i.e sperm production in the seminiferous tubules of the testis, is a complex process that takes over one month to complete. Life-long ability of sperm production ultimately lies in a small population of undifferentiated cells, called spermatogonial stem cells (SSCs). These cells give rise to differentiating spermatogonia, which are committed to mature into spermatozoa. SSCs represent a heterogeneous population of cells and many aspects of their basic biology are still unknown. Understanding the mechanisms behind the cell fate decision of these cells is important to gain more insights into the causes of infertility and testis cancer. In addition, an interesting new aspect is the use of testis-derived stem cells in regenerative medicine. Our data demonstrated that adult mouse testis houses a population of Nanog-expressing spermatogonia. Based on mRNA and protein analysis these cells are enriched in stage XII of the mouse seminiferous epithelial cycle. The cells derived from this stage have the highest capacity to give rise to ES cell-like cells which express Oct4 and Nanog. These cells are under tight non- GDNF regulation but their fate can be dictated by activating p21 signalling. Comparative studies suggested that these cells are regulated like ES cells. Taken together these data imply that pluripotent cells are present in the adult mammalian testis. CIP2A (cancerous inhibitor of PP2A) has been associated with tumour aggressiveness and poor prognosis. In the testis it is expressed by the descendants of stem cells, i.e. the spermatogonial progenitor cells. Our data suggest that CIP2A acts upstream of PLZF and is needed for quantitatively normal spermatogenesis. Classification of CIP2A as a cancer/testis gene makes it an attractive target for cancer therapy. Study on the CIP2A deficient mouse model demonstrates that systemic inhibition of CIP2A does not severely interfere with growth and development or tissue or organ function, except for the spermatogenic output. These data demonstrate that CIP2A is required for quantitatively normal spermatogenesis. Hedgehog (Hh) signalling is involved in the development and maintenance of many different tissues and organs. According to our data, Hh signalling is active at many different levels during rat spermatogenesis: in spermatogonia, spermatocytes and late elongating spermatids. Localization of Suppressor of Fused (SuFu), the negative regulator of the pathway, specifically in early elongating spermatids suggests that Hh signalling needs to be shut down in these cells. Introduction of Hh signalling inhibitor resulted in an increase in germ cell apoptosis. Follicle-stimulating hormone (FSH) and inhibition of receptor tyrosine kinases resulted in down-regulation of Hh signalling. These data show that Hh signalling is under endocrine and paracrine control and it promotes germ cell survival.
Resumo:
The objective is to alert the surgeon about the indiscriminate use of synthetic prosthesis in the correction of inguinal and incisional hernias. The authors provide a brief history of surgery on hernias and a review of the literature, showing the importance of classifying inguinal hernias to fit the type of surgical correction with the defect found, abstaining from treating all hernias, with the same type of surgical procedure. In our opinion, small indirect inguinal hernias (type 1 and 2 of Gilbert) and hernias in women must not, in general, be treated with prostheses. The synthetic material should be reserved for direct and large indirect hernias. Even so, this attitude, besides determining a higher cost for the procedure, can lead to important complications such as infection, rejection, fistula formation, chronic pain, alterations in spermatogenesis and the possibility of carcinogenesis, according to more recent reports. The physiology and anatomy of the abdominal wall should be considered when dealing with incisional hernia corrections, where the surgeon can choose among many techniques to correct those defects, and in selected cases, utilize synthetic material. We conclude that although the use of biomaterials has constituted a great advance in surgery for abdominal wall hernia corrections because they decrease recurrences, and permit treatment of large abdominal hernias, the indiscriminate prosthesis usage is an abuse, and it can determine many serious complications, certainly avoidable with a well indicated non mesh technique .
Resumo:
Male germ cell differentiation, spermatogenesis is an exceptional developmental process that produces a massive amount of genetically unique spermatozoa. The complexity of this process along with the technical limitations in the germline research has left many aspects of spermatogenesis poorly understood. Post-meiotic haploid round spermatids possess the most complex transcriptomes of the whole body. Correspondingly, efficient and accurate control mechanisms are necessary to deal with the huge diversity of transcribed RNAs in these cells. The high transcriptional activity in round spermatids is accompanied by the presence of an uncommonly large cytoplasmic ribonucleoprotein granule, called the chromatoid body (CB) that is conjectured to participate in the RNA post-transcriptional regulation. However, very little is known about the possible mechanisms of the CB function. The development of a procedure to isolate CBs from mouse testes was this study’s objective. Anti-MVH immunoprecipitation of cross-linked CBs from a fractionated testicular cell lysate was optimized to yield considerable quantities of pure and intact CBs from mice testes. This protocol produced reliable and reproducible data from the subsequent analysis of CB’s protein and RNA components. We found that the majority of the CB’s proteome consists of RNA-binding proteins that associate functionally with different pathways. We also demonstrated notable localization patterns of one of the CB transient components, SAM68 and showed that its ablation does not change the general composition or structure of the CB. CB-associated RNA analysis revealed a strong accumulation of PIWI-interacting RNAs (piRNAs), mRNAs and long non-coding RNAs (lncRNAs) in the CB. When the CB transcriptome and proteome analysis results were combined, the most pronounced molecular functions in the CB were related to piRNA pathway, RNA post-transcriptional processing and CB structural scaffolding. In addition, we demonstrated that the CB is a target for the main RNA flux from the nucleus throughout all steps of round spermatid development. Moreover, we provided preliminary evidence that those isolated CBs slice target RNAs in vitro in an ATPdependent manner. Altogether, these results make a strong suggestion that the CB functions involve RNA-related and RNA-mediated mechanisms. All the existing data supports the hypothesis that the CB coordinates the highly complex haploid transcriptome during the preparation of the male gametes for fertilization. Thereby, this study provides a fundamental basis for the future functional analyses of ribonucleoprotein granules and offers also important insights into the mechanisms governing male fertility.
Resumo:
The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.
Resumo:
Follicle-stimulating hormone (FSH) and insulin regulate glycide metabolism in Sertoli cells, thus stimulating lactate production. These stimulatory effects of FSH and insulin do not require protein synthesis, suggesting a modulation of enzyme activity and/or regulation of glucose transport. The present investigation was performed to characterize the hormonal control of lipid metabolism in Sertoli cells. The data indicate that FSH and insulin have a regulatory effect on lipid metabolism in Sertoli cells. After 8 h of preincubation with insulin (5 µg/ml), the activity of the enzyme ATP-citrate lyase in cultured Sertoli cells was increased from 0.19 to 0.34 nmol NAD+ formed µg protein-1 min-1. FSH (100 ng/ml) had no effect on this enzyme. Glycerol phosphate dehydrogenase activity was not affected by any of the hormones tested. When Sertoli cells from 19-day old rats were incubated with [1,214C]acetate for 90 or 360 min, the [14C] label was present predominantly in triglyceride and phospholipid fractions with minor amounts in other lipids. In Sertoli cells pretreated for 16 h with insulin and FSH, an increase in acetate incorporation into lipids was observed. Most of the label was in esterified lipids and this percentage increased with the time of treatment; this increase was remarkable in triglycerides of control cells (18.8% to 30.6%). Since Sertoli cell triglycerides participate in the control of spermatogenesis, the present data suggest that the hormonal control of lipid metabolism in Sertoli cells is important not only for maintaining the energy of the cell itself, but also for the control of the spermatogenesis process.
Resumo:
We investigated whether chronic stress applied from prepuberty to full sexual maturity interferes with spermatogenic and androgenic testicular functions. Male Wistar rats (40 days old) were immobilized 6 h a day for 60 days. Following immobilization, plasma concentrations of corticosterone and prolactin increased 135% and 48%, respectively, while plasma luteinizing hormone and testosterone presented a significant decrease of 29% and 37%, respectively. Plasma concentration of follicle-stimulating hormone was not altered in stressed rats. Chronic stress reduced the amount of mature spermatids in the testis by 16% and the spermatozoon concentration in the cauda epididymidis by 32%. A 17% reduction in weight and a 42% decrease in DNA content were observed in the seminal vesicle of immobilized rats but not in its fructose content. The growth and secretory activity of the ventral prostate were not altered by chronic stress.