967 resultados para selective attention
Resumo:
Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.
Resumo:
Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the property of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB; strain also induces an electronic phase transition between half-metal and metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain condition in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.
Resumo:
This thesis explored the experience of schooling of six adolescent boys diagnosed with AD/HD from the perspectives of the boys, their mothers and their teachers. The study utilised social constructionism as the theoretical orientation and an explanatory theory of AD/HD, the Dynamic Developmental Theory (DDT) of AD/HD as a framework. Findings included the importance of making and managing friendships for young people with AD/HD, the importance of being informed about AD/HD as well classroom strategies that support the learning of students for teachers, and the apparent role that medication in concert with an engaging classroom environment can play in the successful schooling of boys with AD/HD.
Resumo:
We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-identity security reductions without random oracles in groups equipped with a bilinear map. Selective-identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption, and extends naturally to systems with hierarchical identities, or HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–Hellman Inversion assumption and provides another approach to building IBE systems. Our first system, BB1, is very versatile and well suited for practical applications: the basic hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further extended to support efficient non-interactive threshold decryption, among others, all without using random oracles. Both systems, BB1 and BB2, can be modified generically to provide “full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or in the standard model at the expense of a non-polynomial but easy-to-compensate security reduction.
Resumo:
2,2'-Biphenols are a large and diverse group of compounds with exceptional properties both as ligands and bioactive agents. Traditional methods for their synthesis by oxidative dimerisation are often problematic and lead to mixtures of ortho- and para-connected regioisomers. To compound these issues, an intermolecular dimerisation strategy is often inappropriate for the synthesis of heterodimers. The ‘acetal method’ provides a solution for these problems: stepwise tethering of two monomeric phenols enables heterodimer synthesis, enforces ortho regioselectivity and allows relatively facile and selective intramolecular reactions to take place. The resulting dibenzo[1,3]dioxepines have been analysed by quantum chemical calculations to obtain information about the activation barrier for ring flip between the enantiomers. Hydrolytic removal of the dioxepine acetal unit revealed the 2,2′-biphenol target.
Resumo:
Building on the attention-based view, we argue that companies need a challenging mechanism to focus their absorptive capacity attention on corporate entrepreneurship versus mainstream activities or other purposes. We suggest entrepreneurial management as the attential driver for deploying absorptive capacity towards corporate entrepreneurship. From our analysis of a sample of 331 supplier companies providing products and services to the mining industry of Australia and Iran, we observe that absorptive capacity positively affects corporate entrepreneurship. The data also demonstrate that the effect of absorptive on corporate entrepreneurship increases when firms adopt the entrepreneurial culture and reward systems. However, the entrepreneurial growth and resource orientations negatively moderate the relationship between absorptive capacity and corporate entrepreneurship.
Resumo:
Many cognitive neuroscience studies show that the ability to attend to and identify global or local information is lateralised between the two hemispheres in the human brain; the left hemisphere is biased towards the local level, whereas the right hemisphere is biased towards the global level. Results of two studies show attention-focused people with a right ear preference (biased towards the left hemisphere) are better at local tasks, whereas people with a left ear preference (biased towards the right hemisphere) are better at more global tasks. In a third study we determined if right hemisphere-biased followers who attend to global stimuli are likely to have a stronger relationship between attention and globally based supervisor ratings of performance. Results provide evidence in support of this hypothesis. Our research supports our model and suggests that the interaction between attention and lateral preference is an important and novel predictor of work-related outcomes.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
A tissue inhibitor of metalloproteinases-2 (TIMP-2)-independent mechanism for generating the first activational cleavage of pro-matrix metalloproteinase-2 (MMP-2) was identified in membrane type-1 MMP (MT1-MMP)-transfected MCF-7 cells and confirmed in TIMP-2-deficient fibroblasts. In contrast, the second MMP-2-activational step was found to be TIMP-2 dependent in both systems. MMP-2 hemopexin C-terminal domain was found to be critical for the first step processing, confirming a need for membrane tethering. We propose that the intermediate species of MMP-2 forms the well-established trimolecular complex (MT1-MMP/TIMP-2/MMP-2) for further TIMP-2-dependent autocatalytic cleavage to the fully active species. This alternate mechanism may supplement the traditional TIMP-2-mediated first step mechanism.
Resumo:
We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
This paper proposes a method, based on polychotomous discrete choice methods, to impute a continuous measure of income when only a bracketed measure of income is available and for only a subset of the obsevations. The method is shown to perform well with CP5 data. © 1991.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.