861 resultados para scenario clustering
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.
Resumo:
The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
The age-old adage goes that nothing in this world lasts but change, and this generation has indeed seen changes that are unprecedented. Business managers do not have the luxury of going with the flow: they have to plan ahead, to think strategies that will meet the changing conditions, however stormy the weather seems to be. This demand raises the question of whether there is something a manager or planner can do to circumvent the eye of the storm in the future? Intuitively, one can either run on the risk of something happening without preparing, or one can try to prepare oneself. Preparing by planning for each eventuality and contingency would be impractical and prohibitively expensive, so one needs to develop foreknowledge, or foresight past the horizon of the present and the immediate future. The research mission in this study is to support strategic technology management by designing an effective and efficient scenario method to induce foresight to practicing managers. The design science framework guides this study in developing and evaluating the IDEAS method. The IDEAS method is an electronically mediated scenario method that is specifically designed to be an effective and accessible. The design is based on the state-of-the-art in scenario planning, and the product is a technology-based artifact to solve the foresight problem. This study demonstrates the utility, quality and efficacy of the artifact through a multi-method empirical evaluation study, first by experimental testing and secondly through two case studies. The construction of the artifact is rigorously documented as justification knowledge as well as the principles of form and function on the general level, and later through the description and evaluation of instantiations. This design contributes both to practice and foundation of the design. The IDEAS method contributes to the state-of-the-art in scenario planning by offering a light-weight and intuitive scenario method for resource constrained applications. Additionally, the study contributes to the foundations and methods of design by forging a clear design science framework which is followed rigorously. To summarize, the IDEAS method is offered for strategic technology management, with a confident belief that it will enable gaining foresight and aid the users to choose trajectories past the gales of creative destruction and off to a brighter future.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
The growing importance of global sustainability issues has been causing many changes to the financial services industry. Facts such as climate change, social development and the financial crisis in 2008 have been making banks reconsider the manner that they consider environmental, social and economic factors in their decision-making process. At the same time, information technology (IT) has been transforming the financial service industry and its fast development has casted doubts on the way it should be managed within an organization. This current changing environment brings a number of uncertainties to the future that cannot be addressed using traditional forecasting techniques. This research investigates how IT can bring value to sustainability in the financial service industry in 2020. Through the use of a scenario planning technique, we analyzed how trends in the current environment (considering the relation between sustainability, financial institutions an IT) can lead to four different future scenarios. Then, we discussed how IT can improve a bank’s sustainability performance, considering the limitations of each scenario.
Resumo:
Maritime transport is the foundation for trade in the Baltic Sea area. It represents over 15% of the world’s cargo traffic and it is predicted to increase by over 100% in the future. There are currently over 2,000 ships sailing on the Baltic Sea and both the number and the size of ships have been growing in recent years. Due to the importance of maritime traffic in the Baltic Sea Region, ports have to be ready to face future challenges and adapt to the changing operational environment. The companies within the transportation industry – in this context ports, shipowners and logistics companies – compete continuously and although the number of companies in the business is not particularly substantial because the products offered are very similar, other motives for managing the supply chain arise. The factors creating competitive advantage are often financial and related to cost efficiency, but geographical location, road infrastructure in the hinterland and vessel connections are among the most important factors. The PENTA project focuses on adding openness, transparency and sharing knowledge and information, so that the challenges of the future can be better addressed with regard to cooperation. This report presents three scenario-based traffic forecasts for routes between the PENTA ports in 2020. The chosen methodology is PESTE, in which the focus in on economic factors affecting future traffic flows. The report further analyses the findings and results of the first PENTA WP2 report “Drivers of demand in cargo and passenger traffic between PENTA ports” and utilises the same material, which was obtained through interviews and mail surveys.
Resumo:
The purpose of this thesis is to find out whether all the peer to peer lenders are unworthy of credit and also if there are single qualities or combinations of qualities that determine the probability of default of a person or group of people. Distinguishing qualities are searched with self-organizing maps (SOM). Qualities and groups of people found by the self-organizing map are then compared to the average. The comparison is carried out by looking how big proportion of borrowers meeting the criteria is two months or more behind with their payments. Research data used is collected by an Estonian peer to peer lending company during the years of 2011-2014. Data consists of peer to peer borrowers and information gathered from them.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
This master thesis work introduces the fuzzy tolerance/equivalence relation and its application in cluster analysis. The work presents about the construction of fuzzy equivalence relations using increasing generators. Here, we investigate and research on the role of increasing generators for the creation of intersection, union and complement operators. The objective is to develop different varieties of fuzzy tolerance/equivalence relations using different varieties of increasing generators. At last, we perform a comparative study with these developed varieties of fuzzy tolerance/equivalence relations in their application to a clustering method.