969 resultados para rocky reef fish


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early life history traits (ELHTs) are key to understand recruitment patterns in marine animals. However, for reef fishes, studies on ELHTs are mainly focused on tropical systems and little is known for temperate reefs. In this study we used SMURFs (Standard Monitoring Units for the Recruitment of Reef Fishes) to collect fish in a temperate rocky reef system (Arrábida Marine Park, Portugal) on a weekly basis for three months during the recruitment period. Six sub-surface SMURFs sampled 2490 Atlantic horse mackerel (Trachurus trachurus) postlarvae and juveniles. Sagittal and lapilli otoliths were extracted from a subsample of 296 fish and ELHTs, such as size and age at settlement, growth rate and age at first secondary growth formation were examined. Additionally, we tested three growth curves and selected the best suited to back-calculate the hatching pattern based on the lengths of all sampled fish. Standard length ranged from 6.13 mm to 48.56 mm and subsampled fish were aged between 19 days to 44 days. Age and size at settlement were estimated between 19 days and 36 days for individuals of 6.13 mm and 24.95 mm, respectively. Otolith shape changed clearly with increasing age and, on average, secondary growth started to form on day 33 (±3 days). Age/length relationship was well described by a Gompertz growth model which was used to back-calculate hatching dates. Four distinct hatching cohorts were identified with fish of the earliest cohort showing a faster body and otolith growth. This study indicates that the nearshore environment might have an important role in the early growth, development and hence recruitment of Atlantic horse mackerel. Information on the early life history of Atlantic horse mackerel is key to understand recruitment processes for this economically and biologically important species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many vertebrates are known to show behavioural lateralization, whereby they differentially use one side of their body or either of their bilateral organs or limbs. Behavioural lateralization often manifests in a turning bias in fishes, with some individuals showing a left bias and others a right bias. Such biases could be the source of considerable conflict in fish schools given that there may be considerable social pressure to conform to the group to maintain effective group evasion. Here, we show that predation pressure is a major determinant of the degree of lateralization, both in a relative and absolute sense, in yellow-and-blueback fusiliers (Caesio teres), a schooling fish common on coral reefs. Wild-caught fish showed a bias for right turning. When predation pressure was experimentally elevated or relaxed, the strength of lateralization changed. Higher predation pressure resulted in an increase in the strength of lateralization. Individuals that exhibited the same turning bias as the majority of individuals in their group had improved escape performance compared with individuals that were at odds with the group. Moreover, individuals that were right-biased had improved escape performance, compared with left-biased ones. Plasticity in lateralization might be an important evolutionary consequence of the way gregarious species respond to predators owing to the probable costs associated with this behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial reefs are used as management tools for coastal fisheries and ecosystems and the knowledge of habitat use and fish movements around them is necessary to understand their performance and improve their design and location. In this study wild specimens of Diplodus sargus were tagged with acoustic tags and their movements were tracked using passive acoustic telemetry. The monitored area enclosed a natural rocky reef, an adjacent artificial reef (AR) and shallower sandy bottoms. Most of the fish were close to full time residents in the monitored area. Results revealed that D. sargus use the natural reef areas on a more frequent basis than the AR. However, excursions to the adjacent AR and sandy bottoms were frequently detected, essentially during daytime. The use of acoustic telemetry allowed a better understanding of the use of artificial reef structures and its adjacent areas by wild D. sargus providing information that is helpful towards the improvement of AR design and location. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer regions. The assays were tested against DNA of ten other co-occurring reef fish species to ensure the assay's specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventy-six Centropristis larva were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. Those assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wild-harvest fisheries for live reef fish are largely over-exploited or unsustainable because of over-fishing and the widespread use of destructive fishing practices such as blast and cyanide fishing. Sustainable aquaculture – such as that of groupers – is one option for meeting the strong demand for reef fish, as well as potentially maintaining or improving the livelihoods of coastal communities. This report from a short study by the STREAM Initiative draws on secondary literature, media sources and four diverse case studies from at-risk reef fisheries, to frame a strategy for encouraging sustainable aquaculture as an alternative to destructive fishing practices. It was undertaken as a component of the APEC-funded project Collaborative Grouper Research and Development Network (FWG/01/2001) to better understand how recent technical advances in grouper culture and other complementary work – including that of the Asia-Pacific Marine Finfish Aquaculture Network (APMFAN) hosted by NACA – could better support the livelihoods of poor coastal communities. (PDF contains 49 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the potential for water chemistry to affect the width of daily increments in reef fish otoliths using both mensurative and manipulative methods. We found significant differences in the widths of increments in otoliths of the neon damselfish (Pomacentrus coelestis) collected in different habitats at One Tree Island on the Great Barrier Reef. We then used manipulative experiments to determine if natural water masses (ocean water vs. lagoon plume) could produce different incremental widths in otoliths in the absence of potentially confounding factors. Fish exposed to ocean water had significantly wider otolith increments for two of the three experiments. Elemental analyses indicated that Ba/Ca ratios were significantly correlated with increment widths for two of the three experiments and Sr/Ca ratios did not correlate with increment width for any experimental period. Variation in crystal-lattice orientation did not explain differences in increment width between treatments. Differences in water chemistry can affect increment widths in otoliths of reef fishes, potentially confounding patterns previously attributed to growth rate or condition alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Between 1999 and 2003, the WorldFish Center in Solomon Islands conducted research into the feasibility of a new fishery based on the capture and culture of postlarval coral reef fish for the live fish trade. The work was carried out in two phases: a research phase from late 1999 to the end of 2002; and a “finetuning” phase in 2003. Most of the species were of value to the marine aquarium trade, with very few live reef food fish recorded. The most valuable ornamentals were the banded cleaner shrimp, Stenopus species. Cleaner shrimp were harvested using crest nets, the method being modified with the addition of a solid, water-retaining cod-end designed to increase survival at capture. Grow-out techniques were improved by rearing the shrimp separately in jars to prevent aggression. The jars were painted black to protect the shrimp from sunlight. An economic model using experimental catch data and farm gate prices indicates that the fishery based on shrimp, supplemented with small numbers of lobster and fish is economically viable. The next step will be setting up a demonstration farm in a village in the Western Province of Solomon Islands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gray snapper (Lutjanus griseus) is a temperate and tropical reef fish that is found along the Gulf of Mexico and Atlantic coasts of the southeastern United States. The recreational fishery for gray snapper has developed rapidly in south Louisiana with the advent of harvest and seasonal restrictions on the established red snapper (L. campechanus) fishery. We examined the age and growth of gray snapper in Louisiana with the use of cross-sectioned sagittae. A total of 833 specimens, (441 males, 387 females, and 5 of unknown sex) were opportunistically sampled from the recreational fishery from August 1998 to August 2002. Males ranged in size from 222 to 732 mm total length (TL) and from 280 g to 5700 g total weight (TW) and females ranged from 254 to 756 mm TL and from 340 g to 5800 g TW. Both edge analysis and bomb radiocarbon analyses were used to validate otolith-based age estimates. Ages were estimated for 718 individuals; both males and females ranged from 1 to 28 years. The von Bertalanffy growth models derived from TL at age were Lt = 655.4{1–e[–0.23(t)]} for males, Lt = 657.3{1–e[– 0.21(t)]} for females, and L t = 656.4{1–e[– 0.22 (t)]} for all specimens of known sex. Catch curves were used to produce a total mortality (Z) estimate of 0.17. Estimates of M calculated with various methods ranged from 0.15 to 0.50; however we felt that M= 0.15 was the most appropriate estimate based on our estimate of Z. Full recruitment to the gray snapper recreational fishery began at age 4, was completed by age 8, and there was no discernible peak in the catch curve dome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many species of reef f ish agg regate seasonally in large numbers to spawn at predictable times and sites (Johannes, 1978; Sadovy, 1996; Domeier and Colin, 1997). Although spawning behavior has been observed for many reef fish in the wild (Wicklund, 1969; Smith, 1972; Johannes, 1978; Sadovy et al., 1994; Aguilar Perera and Aguilar Davila, 1996), few records exist of observations on the courtship or natural spawning for the commercially important family Carangidae (jacks) (von Westernhagen, 1974; Johannes, 1981; Sala et al., 2003). In this study, we present the first observations on the natural spawning behavior of the economically-valuable permit (Trachinotus falcatus)(Linnaeus, 1758) from the full to new moon period at reef promontories in Belize, with notes on the spawning of the yellow jack (Carangoides bartholomaei) (Cuvier, 1833), and the courtship of five other carangid species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite considerable conservation efforts, many reef fish fisheries around the world continue to be in peril. Many are vulnerable to overexploitation because they have predictable and highly aggregated spawning events. In U.S. Caribbean waters, fishery managers are increasingly interested in advancing the use of closed areas as a means for rebuilding reef fisheries, protecting coral reef habitats, and furthering ecosystem-based management while maintaining the sustained participation of local fishing communities. This study details small-scale fishermen’s views on the Caribbean Fishery Management Council’s proposals to lengthen the current Bajo de Sico seasonal closure off the west coast of Puerto Rico to afford additional protection to snapper-grouper spawning populations and associated coral reef habitats. Drawing on snowball sampling techniques, we interviewed 65 small-scale fishermen who regularly operate in the Bajo de Sico area. Snowball sampling is a useful method to sample difficult-to-find populations. Our analysis revealed that the majority of the respondents opposed a longer seasonal closure in the Bajo de Sico area, believing that the existing 3-month closure afforded ample protection to reef fish spawning aggregations and that their gear did not impact deep-water corals in the area. Whilst fishermen’s opposition to additional regulations was anticipated, the magnitude of the socio-economic consequences described was unexpected. Fishermen estimated that a year round closure would cause their gross household income to fall between 10% and 80%, with an average drop of 48%. Our findings suggest that policy analysts and decision-makers should strive to better understand the cumulative impacts of regulations given the magnitude of the reported socio-economic impacts; and, more importantly, they should strive to enhance the existing mechanisms by which fishermen can contribute their knowledge and perspectives into the management process.