939 resultados para robust estimation statistics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo se realiza la medición del riesgo de mercado para el portafolio de TES de un banco colombiano determinado, abordando el pronóstico de valor en riesgo (VaR) mediante diferentes modelos multivariados de volatilidad: EWMA, GARCH ortogonal, GARCH robusto, así como distintos modelos de VaR con distribución normal y distribución t-student, evaluando su eficiencia con las metodologías de backtesting propuestas por Candelon et al. (2011) con base en el método generalizado de momentos, junto con los test de independencia y de cobertura condicional planteados por Christoffersen y Pelletier (2004) y por Berkowitz, Christoffersen y Pelletier (2010). Los resultados obtenidos demuestran que la mejor especificación del VaR para la medición del riesgo de mercado del portafolio de TES de los bancos colombianos, es el construido a partir de volatilidades EWMA y basado en la distribución normal, ya que satisface las hipótesis de cobertura no condicional, independencia y cobertura condicional, al igual que los requerimientos estipulados en Basilea II y en la normativa vigente en Colombia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the effect of a parametric reform of the fully-funded pension regime in Colombia on the intensive margin of the labor supply. We take advantage of a threshold defined by law in order to identify the causal effect using a regression discontinuity design. We find that a pension system that increases retirement age and the minimum weeks during which workers must contribute to claim pension benefits causes an increase of around 2 hours on the number of weekly worked hours; this corresponds to 4% of the average number of weekly worked hours or around 14% of a standard deviation of weekly worked hours. The effect is robust to different specifications, polynomial orders and sample sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We document the existence of a Crime Kuznets Curve in US states since the 1970s. As income levels have risen, crime has followed an inverted U-shaped pattern, first increasing and then dropping. The Crime Kuznets Curve is not explained by income inequality. In fact, we show that during the sample period inequality has risen monotonically with income, ruling out the traditional Kuznets Curve. Our finding is robust to adding a large set of controls that are used in the literature to explain the incidence of crime, as well as to controlling for state and year fixed effects. The Curve is also revealed in nonparametric specifications. The Crime Kuznets Curve exists for property crime and for some categories of violent crime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is common practice to design a survey with a large number of strata. However, in this case the usual techniques for variance estimation can be inaccurate. This paper proposes a variance estimator for estimators of totals. The method proposed can be implemented with standard statistical packages without any specific programming, as it involves simple techniques of estimation, such as regression fitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systematic sampling (SYS) design (Madow and Madow, 1944) is widely used by statistical offices due to its simplicity and efficiency (e.g., Iachan, 1982). But it suffers from a serious defect, namely, that it is impossible to unbiasedly estimate the sampling variance (Iachan, 1982) and usual variance estimators (Yates and Grundy, 1953) are inadequate and can overestimate the variance significantly (Särndal et al., 1992). We propose a novel variance estimator which is less biased and that can be implemented with any given population order. We will justify this estimator theoretically and with a Monte Carlo simulation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the robustness of a hybrid analog/digital feedback active noise cancellation (ANC) headset system. The digital ANC systems with the filtered-x least-mean-square (FXLMS) algorithm require accurate estimation of the secondary path for the stability and convergence of the algorithm. This demands a great challenge for the ANC headset design because the secondary path may fluctuate dramatically such as when the user adjusts the position of the ear-cup. In this paper, we analytically show that adding an analog feedback loop into the digital ANC systems can effectively reduce the plant fluctuation, thus achieving a more robust system. The method for designing the analog controller is highlighted. A practical hybrid analog/digital feedback ANC headset has been built and used to conduct experiments, and the experimental results show that the hybrid headset system is more robust under large plant fluctuation, and has achieved satisfactory noise cancellation for both narrowband and broadband noises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzes organic adoption decisions using a rich set of time-to-organic durations collected from avocado small-holders in Michoacán Mexico. We derive robust, intrasample predictions about the profiles of entry and exit within the conventional-versus-organic complex and we explore the sensitivity of these predictions to choice of functional form. The dynamic nature of the sample allows us to make retrospective predictions and we establish, precisely, the profile of organic entry had the respondents been availed optimal amounts of adoption-restraining resources. A fundamental problem in the dynamic adoption literature, hitherto unrecognized, is discussed and consequent extensions are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seamless phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages, with stage 1 used to answer phase II objectives such as treatment selection and stage 2 used for the confirmatory analysis, which is a phase III objective. Although seamless phase II/III clinical trials are efficient because the confirmatory analysis includes phase II data from stage 1, inference can pose statistical challenges. In this paper, we consider point estimation following seamless phase II/III clinical trials in which stage 1 is used to select the most effective experimental treatment and to decide if, compared with a control, the trial should stop at stage 1 for futility. If the trial is not stopped, then the phase III confirmatory part of the trial involves evaluation of the selected most effective experimental treatment and the control. We have developed two new estimators for the treatment difference between these two treatments with the aim of reducing bias conditional on the treatment selection made and on the fact that the trial continues to stage 2. We have demonstrated the properties of these estimators using simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.