944 resultados para rhoptry-associated protein 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (CaP) patients with disseminated disease often suffer from severe cachexia, which contributes to mortality in advanced cancer. Human cachexia-associated protein (HCAP) was recently identified from a breast cancer library based on the available 20-amino acid sequence of proteolysis-inducing factor (PIF), which is a highly active cachectic factor isolated from mouse colon adenocarcinoma MAC16. Herein, we investigated the expression of HCAP in CaP and its potential involvement in CaP-associated cachexia. HCAP mRNA was detected in CaP cell lines, in primary CaP tissues and in its osseous metastases. In situ hybridization showed HCAP mRNA to be localized only in the epithelial cells in CaP tissues, in the metastatic foci in bone, liver and lymph node, but not in the stromal cells or in normal prostate tissues. HCAP protein was detected in 9 of 14 CaP metastases but not in normal prostate tissues from cadaveric donors or patients with organ-confined tumors. Our Western blot analysis revealed that HCAP was present in 9 of 19 urine specimens from cachectic CaP patients but not in 19 urine samples of noncachectic patients. HCAP mRNA and protein were also detected in LuCaP 35 and PC-3M xenografts from our cachectic animal models. Our results demonstrated that human CaP cells express HCAP and the expression of HCAP is associated with the progression of CaP and the development of CaP cachexia. © 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated islet uncoupling protein-2 (UCP-2) impairs β-cell function and UCP-2 may be increased in clinical obesity and diabetes. We investigated the effects of glucose and leptin on UCP-2 expression in isolated human islets. Human islets were incubated for 24 h with glucose (5.5–22 mmol/l)±leptin (0–10 nmol/l). Some islet batches were incubated at high (22 mmol/l), and subsequently lower (5.5 mmol/l), glucose to assess reversibility of effects. Leptin effects on insulin release were also measured. Glucose dose-dependently increased UCP-2 expression in all islet batches, maximally by three-fold. This was not fully reversed by subsequently reduced glucose levels. Leptin decreased UCP-2 expression by up to 75%, and maximally inhibited insulin release by 47%, at 22 mmol/l glucose. This is the first report of UCP-2 expression in human islets and provides novel evidence of its role in the loss of β-cell function in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements The authors would like to thank Dr Marius Sudol for the hYAP plasmids (obtained through Addgene), Dr Pete Zammit for the pMSCV-IRES-eGFP plasmid, Dr Robert Judson for subcloning the hYAP cDNAs into the pMSCV-IRES-eGFP plasmid, Dr Lynda Erskine for the provision of mouse embryo samples, and Professor Jimmy Hutchison and the Orthopaedics Department at the Aberdeen Royal Infirmary for the provision of human tissue samples. The authors are also grateful to Denise Tosh and Susan Clark for excellent technical support. This work was funded by Arthritis Research UK (grant 19429).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aversive nature of regenerative milieu is the main problem related to the failure of neuronal restoration in the injured spinal cord which however might be addressed with an adequate repair intervention. We evaluated whether glial cell line-derived neurotrophic factor (GDNF) may increase the ability of sciatic nerve graft, placed in a gap promoted by complete transections of the spinal cord, to enhance motor recovery and local fiber growth. Methods: Rats received a 4 mm-long gap at low thoracic level and were repaired with a fragment of the sciatic nerve. GDNF was added (NERVE+GDNF) or not to the grafts (NERVE-GDNF). Motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively, and also the spontaneous motor behavior in an open field by means of an infrared motion sensor activity monitor were analyzed. At the end of the third month post surgery, the tissue composed by the graft and the adjacent regions of the spinal cord was removed and submitted to the immunohistochemistry of the neurofilament-200 (NF-200), growth associated protein-43 (GAP-43), microtubule associated protein-2 (MAP-2), 5-hidroxytryptamine (serotonin, 5-HT) and calcitonin gene related peptide (CGRP). The immunoreactive fibers were quantified at the epicenter of the graft by means of stereological procedures. Results: Higher BBB and lower CBS levels (p < 0.001) were found in NERVE+GDNF rats. GDNF added to the graft increased the levels of individual sensorimotor tests mainly at the third month. Analysis of the spontaneous motor behavior showed decreases in the time and number of small movement events by the third month without changes in time and number of large movement events in the NERVE+GDNF rats. Immunoreactive fibers were encountered inside the grafts and higher amounts of NF-200, GAP-43 and MAP-2 fibers were found in the epicenter of the graft when GDNF was added. A small amount of descending 5-HT fibers was seen reentering in the adjacent caudal levels of the spinal cords which were grafted in the presence of GDNF, event that has not occurred without the neurotrophic factor. GDNF in the graft also led to a large amount of MAP-2 perikarya and fibers in the caudal levels of the cord gray matter, as determined by the microdensitometric image analysis. Conclusions: GDNF added to the nerve graft favored the motor recovery, local neuronal fiber growth and neuroplasticity in the adjacent spinal cord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corpus callosum (CC) is a major telencephalic commissure containing mainly cortico-cortical axons and glial cells. We have identified neurons in the CC of the cat and quantified their number at different postnatal ages. An antibody against microtubule-associated protein 2 was used as a marker of neurons. Immunocytochemical double-labelling with neuron-specific enolase or gamma-aminobutyric acid antibodies in the absence of glial fibrillary acidic protein positivity confirmed the neuronal phenotype of these cells. CC neurons were also stained with anti-calbindin and anti-calretinin antibodies, typical for interneurons, and with an anti-neurofilament antibody, which in neocortex detects pyramidal neurons. Together, these findings suggest that the CC contains a mixed population of neuronal types. The quantification was corrected for double counting of adjacent sections and volume changes during CC development. Our data show that CC neurons are numerous early postnatally, and their number decreases with age. At birth, about 570 neurons are found within the CC boundaries and their number drops to about 200 in the adult. The distribution of the neurons within the CC also changes in development. Initially, many neurons are found throughout the CC, while at later ages they become restricted to the boundaries of the CC, and in the adult to the rostrum of the CC close to the septum pellucidum or to the indusium griseum. Although origin and function of transient CC neurons in development and in adulthood remain unknown, they are likely to be interstitial neurons. Some of them have well-developed and differentiated processes and resemble pyramidal cells or interneurons. An axon-guiding function during the early postnatal period can not be excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.