976 resultados para retinal images


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerned development and validation of a simple and inexpensive method involving partial coherence interferometry for measuring retinal shape, and its use in exploring association between retinal shape and myopia. Retinal shapes estimates using partial coherence interferometry were validated against estimates obtained from magnetic resonance imaging. Steeper retinas were found along the horizontal than along the vertical meridian, in myopes than in emmetropes, and in East Asian myopes than in Caucasian myopes. The racial differences, combined with the high prevalence of myopia in East Asia, suggest that retinal shape may play a role in myopia development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corner detection has shown its great importance in many computer vision tasks. However, in real-world applications, noise in the image strongly affects the performance of corner detectors. Few corner detectors have been designed to be robust to heavy noise by now, partly because the noise could be reduced by a denoising procedure. In this paper, we present a corner detector that could find discriminative corners in images contaminated by noise of different levels, without any denoising procedure. Candidate corners (i.e., features) are firstly detected by a modified SUSAN approach, and then false corners in noise are rejected based on their local characteristics. Features in flat regions are removed based on their intensity centroid, and features on edge structures are removed using the Harris response. The detector is self-adaptive to noise since the image signal-to-noise ratio (SNR) is automatically estimated to choose an appropriate threshold for refining features. Experimental results show that our detector has better performance at locating discriminative corners in images with strong noise than other widely used corner or keypoint detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images of scantily clad women are used by advertisers to make products more attractive to men. This ‘‘sex sells’’ approach is increasingly employed to promote ethical causes, most prominently by the animal-rights organization PETA. Yet sexualized images can dehumanize women, leaving an unresolved paradox – is it effective to advertise an ethical cause using unethical means? In Study 1, a sample of Australian male undergraduates (N = 82) viewed PETA advertisements containing either sexualized or non-sexualized images of women. Intentions to support the ethical organization were reduced for those exposed to the sexualized advertising, and this was explained by their dehumanization of the sexualized women, and not by increased arousal. Study 2 used a mixed-gender community sample from the United States (N = 280), replicating this finding and extending it by showing that behaviors helpful to the ethical cause diminished after viewing the sexualized advertisements, which was again mediated by the dehumanization of the women depicted. Alternative explanations relating to the reduced credibility of the sexualized women and their objectification were not supported. When promoting ethical causes, organizations may benefit from using advertising strategies that do not dehumanize women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literacy demands of mathematics are very different to those in other subjects (Gough, 2007; O'Halloran, 2005; Quinnell, 2011; Rubenstein, 2007) and much has been written on the challenges that literacy in mathematics poses to learners (Abedi and Lord, 2001; Lowrie and Diezmann, 2007, 2009; Rubenstein, 2007). In particular, a diverse selection of visuals typifies the field of mathematics (Carter, Hipwell and Quinnell, 2012), placing unique literacy demands on learners. Such visuals include varied tables, graphs, diagrams and other representations, all of which are used to communicate information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the thickness of the invivo peripapillary choroid have been documented in a range of ocular conditions in adults; however, choroidal thickness in the peripapillary region of children has not been examined in detail. This study therefore aimed to investigate the thickness of the peripapillary choroid and the overlying retinal nerve fibre layer (RNFL) in a population of normal children with a range of refractive errors. Ninety-three children (37 myopes and 56 non-myopes) aged between 11 and 16 years, had measurements of peripapillary choroidal and RNFL thickness derived from enhanced depth imaging optical coherence tomography images (EDI-OCT, Heidelberg Spectralis). The average thickness was determined in a series of five 0.25 mm width concentric annuli (each divided into 8 equal sized 45° sectors) centred on the optic nerve head boundary, accounting for individual ocular magnification factors and the disc-fovea angle. Significant variations in peripapillary choroidal thickness were found to occur with both annulus location (p<0.001) and sector position (p<0.001) in this population of children. The innermost annulus (closest to the edge of the optic disc) exhibited the thinnest choroid (mean 77 ± 16 μm) and the outermost annulus, the thickest choroid (191 ± 52 μm). The choroid was thinnest inferior to the optic nerve head (139 ± 38 μm) and was thickest in the superior temporal sector (157 ± 40 μm). Significant differences in the distribution of choroidal thickness were also associated with myopia, with myopic children having significantly thinner choroids in the inner and outer annuli of the nasal and temporal sectors respectively (p<0.001). RNFL thickness also varied significantly with annulus location and sector (p<0.001), and showed differences in thickness distribution associated with refractive error. This study establishes the normal variations in the thickness of the peripapillary choroid with radial distance and azimuthal angle from the optic nerve head boundary. A significant thinning of the peripapillary choroid associated with myopia in childhood was also observed in both nasal and temporal regions. The changes in peripapillary RNFL and choroidal thickness associated with refractive error are consistent with a redistribution of these tissues occurring with myopic axial elongation in childhood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.