962 resultados para retinal ganglion cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated whether inhibition of platelet-derived growth factor (PDGF) receptor tyrosine kinase activity would affect pericyte viability, vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR-2) expression and angiogenesis in a model of retinopathy of prematurity (ROP). ROP was induced in Sprague Dawley rats by exposure to 80% oxygen from postnatal (P) days 0 to 11 (with 3 hours/day in room air), and then room air from P12-18 (angiogenesis period). Shams were neonatal rats in room air from P0-18. STI571, a potent inhibitor of PDGF receptor tyrosine kinase, was administered from P12-18 at 50 or 100 mg/kg/day intraperitoneal (i.p.). Electron microscopy revealed that pericytes in the inner retina of both sham and ROP rats appeared normal; however STI571 induced a selective pericyte and vascular smooth muscle degeneration. Immunolabeling for caspase-3 and a-smooth muscle cell actin in consecutive paraffin sections of retinas confirmed that these degenerating cells were apoptotic pericytes. In all groups, VEGF and VEGFR-2 gene expression was located in ganglion cells, the inner nuclear layer, and retinal pigment epithelium. ROP was associated with an increase in both VEGF and VEGFR-2 gene expression and blood vessel profiles in the inner retina compared to sham rats. STI571 at both doses increased VEGF and VEGFR-2 mRNA and exacerbated angiogenesis in ROP rats, and in sham rats at 100 mg/kg/day. In conclusion, PDGF is required for pericyte viability and the subsequent prevention of VEGF/VEGFR-2 overexpression and angiogenesis in ROP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats.

Methods: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10–100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (26.04 to 2.72 log cd.s.m^-2). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m22) after 15 min of light adaptation (150 cd/m2). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology.

Results: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density.

Conclusions: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a ‘threshold’ for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Au cours des dernières années, un intérêt grandissant concernant les rôles physiologiques des endocannabinoïdes (eCBs) a été observé. Le système eCB est une cible attrayante pour la modulation du système immunitaire et de la douleur périphérique. Bien que le récepteur CB1 soit distribué dans le système nerveux, le récepteur CB2 est traditionnellement associé au système immunitaire. Ce dogme fait maintenant l’objet d’un débat depuis la découverte de l’expression du récepteur CB2 dans certains neurones. La rétine est un modèle important pour l’étude de processus neuronaux. La présence du récepteur CB1 y a été démontrée. Des études fonctionnelles rapportent que l’activation des récepteurs cannabinoïdes affecte le fonctionnement de plusieurs cellules rétiniennes. À ce jour, aucune étude ne s’est intéressée au rôle global des récepteurs CB1 et CB2 dans la rétine. Nous avons investigué les conséquences de l’élimination du récepteur CB1 (cnr1-/-) ou du récepteur CB2 (cnr2-/-) sur la fonction rétinienne mesurée par électrorétinographie. Nous avons également caractérisé la distribution du récepteur CB2 dans la rétine. Pour ce faire, nous avons comparé la spécificité de plusieurs anticorps dirigés contre le récepteur CB2. Seulement l’un des anticorps testés a montré une spécificité satisfaisante. Il a permis de détecter la présence du récepteur CB2 dans les cônes, les bâtonnets, les cellules horizontales, amacrines, bipolaires et ganglionnaires. Nos résultats d’électrorétinographie indiquent que seules les souris cnr2-/- présentent une amplitude accrue de l’onde a des ERG, en conditions scotopiques. En conditions photopiques, l’amplitude de l’onde b des souris cnr2-/- montre un schéma d’adaptation à la lumière différent des autres groupes. Aucun effet significatif n’a été observé chez les animaux cnr1-/-. Ces résultats permettent de conclure que les récepteurs CB1 et CB2 jouent des rôles différents dans le traitement visuel et que le récepteur CB2 semble être impliqué dans l’établissement des réponses rétiniennes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The visual system is an important link between the animal and the environment, com profound influences on the habits and lifestyle in various habitats. Adaptive mechanismsto the temporal niche are present in the visual system of many vertebrates, involving changins in ocular dimensios and design, retinal cell distribution and organization of neurochemical circuits related to the retinal resolution or sensitivity. The sensory system of the eye is represented by the retina, whose organization is responsible by receipty, initial analysis, and transmission of the information to the brain. The knowledge of the position of the eyes in the head and the distribution of retinal cells allow to identify adaptive aspects of each species to its visual field, which is characteristic to the ecological niche it occupies. In this research, we study eye anatomical characteristics and retina neurochemical features of the rock cavy (Kerodon rupestris), a tipical Brazilian rodent from the suborder Hystricomorpha, family Caviidae. The rock cavy has lateral eyes well constitute bony orbit and well differentiated extrinsic muscle. The study of the descriptive and morphometric anatomy of the showed mean values of axial diameter 10.7±0,5mm and equatorial diameter 11.6±0.7mm. The pupil is slit shaped and the lens has mean axial diameter 5.4±0.03 mm, corresponding to ~45% of the axial diameter of the eye. The posterior nodal distance and the retinal magnification factor were estimated at 6.74 mm e 118 μm/grau, respectively. Flat mounts were processed for Nissl stain, and the topographic distribution of ganglion cells showed a moderate visual band, just below the optic disc, with higher density in the ventral retina. Retinal vertical sections and flat mounts were processed for immunohistochemistry to visualize tyrosine hydroxilase (TH) and thus two types of TH+ cells were detected. Type 1 cells had strong TH-immunoreactivity, the body cell varied from 120.047 to 269.373 μm2 stratifying in the sublamina 1 of the IPL. Type 2 cells were weakly TH-imunoreactive, had cell body located mostly in the IPL, varying from 54.848 to 177.142 μm2, constituting ~10% of the TH+ cells. Both cell types exhibited similar topographic distribution with higher density found in a horizontal band along of the naso-temporal axis in the dorsal retina. The total population of dopaminergic cells was 2,156±469,4 cells, occupying an average area of 198,164 μm2. The presence of cones and rods was detected by immunohistochemistry in vertical sections and flat mounts. S cones density is around 10 times smaller than L cones, with different degree of spatial organization. Other retinal neuronal populations of the rock cavy were also detected in vertical sections with specific markers. Comparative analysis of the anatomical characteristics of the rock cavy eye 12 suggest that it was designed to acquire higher sensitivity to light, at expense of image sharpness, compatible with a vision at mesopic conditions. Additionally, the distribution of the 2 subtypes of dopaminergic cells in a naso-temporal band in the dorsal retina seems suitable to a gain in sensitivity, coherent with an animal with predominantly crepuscular activity pattern

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present investigation we mapped the primary visual area of the South American diurnal rodent, Dasyprocta aguti, by standardized electrophysiological mapping techniques. In particular, we performed a series of mapping experiments of the visual streak in the primary visual cortex. We found that the representation of the visual streak in V1 is greatly expanded, the nasal 10 degrees of the visual streak representation occupies ten times more cortical area than equivalent areas in the central or temporal representation. Comparison of these data with those on the density of ganglion cells in the retina at corresponding locations in the visual field reveal a significant mismatch between these two variables. The nasal representation is greatly expanded along the horizontal meridian in V1 as compared to the central and temporal regions whereas the density of ganglion cells decreases with progression along the visual streak from central region towards the nasal or temporal visual field. A review of the available data reveals that all lateral-eyed mammals exhibit a similar mismatch between the retinal and cortical representation of the visual field, and this mismatches is greater in those species with well defined visual streaks such as rabbit and agouti.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE. To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS. Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark-and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach 1/2Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS. Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 mu V; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m(2)) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS. This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease. (Invest Ophthalmol Vis Sci. 2012;53:5552-5561) DOI: 10.1167/iovs.12-10037

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocular enucleation induces profound morphological alterations in central visual areas. However, little is known about the response of glial cells and possible inflammatory processes in visual brain areas resulting from eye enucleation. In this study, immunoblotting and immunostaining assays revealed increased expression of astrocyte and microglia markers in the rat superior colliculus (SC) between 1 and 15 days after contralateral enucleation. A transient increase of neuronal COX-2 protein expression was also found in the SC. To evaluate the role of an anti-inflammatory drug in attenuating both COX-2 and glial cell activation, the synthetic glucocorticoid dexamethasone (DEX) was administered (1mg/kg i.p., for 3 days) to enucleated rats. Immunoblotting data revealed that DEX treatment significantly inhibited COX-2 protein expression. Postlesion immunostaining for astrocyte and microglia markers was also significantly reduced by DEX treatment. These findings suggest that the removal of retinal ganglion cell input generates inflammatory responses in central retinorecipient structures

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.