871 resultados para remote learning courses
Resumo:
The alignment between competences, teaching-learning methodologies and assessment is a key element of the European Higher Education Area. This paper presents the efforts carried out by six Telematics, Computer Science and Electronic Engineering Education teachers towards achieving this alignment in their subjects. In a joint work with pedagogues, a set of recommended actions were identified. A selection of these actions were applied and evaluated in the six subjects. The cross-analysis of the results indicate that the actions allow students to better understand the methodologies and assessment planned for the subjects, facilitate (self-) regulation and increase students’ involvement in the subjects.
Resumo:
Introduction: Interprofessional collaborative practices are increasingly recognized as an effective way to deal with complex health problems. However, health sciences students continue to be trained in specialized programs and have little occasion for learning in interdisciplinary contexts. Program Development: The project's purpose was to develop content and an educational design for new prelicensure interfaculty courses on interprofessional collaboration in patient and family-centered care which embedded interprofessional education principles where participants learn with, from and about each other. Implementation: Intensive training was part of a 45-hour program, offered each semester, which was divided into three 15-hour courses given on weekends, to enhance accessibility. Evaluation: A total of 215 students completed questionnaires following the courses, to assess their satisfaction with the educational content. Pre/post measures assessed perception of skills acquisition and perceived benefits of interprofessional collaboration training. Results showed a significant increase from the students' point of view in the knowledge and benefits to be gained from interprofessional collaboration training.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
Introduction: Evidence-based medicine (EBM) improves the quality of health care. Courses on how to teach EBM in practice are available, but knowledge does not automatically imply its application in teaching. We aimed to identify and compare barriers and facilitators for teaching EBM in clinical practice in various European countries. Methods: A questionnaire was constructed listing potential barriers and facilitators for EBM teaching in clinical practice. Answers were reported on a 7-point Likert scale ranging from not at all being a barrier to being an insurmountable barrier. Results: The questionnaire was completed by 120 clinical EBM teachers from 11 countries. Lack of time was the strongest barrier for teaching EBM in practice (median 5). Moderate barriers were the lack of requirements for EBM skills and a pyramid hierarchy in health care management structure (median 4). In Germany, Hungary and Poland, reading and understanding articles in English was a higher barrier than in the other countries. Conclusion: Incorporation of teaching EBM in practice faces several barriers to implementation. Teaching EBM in clinical settings is most successful where EBM principles are culturally embedded and form part and parcel of everyday clinical decisions and medical practice.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
Remote sensing image processing is nowadays a mature research area. The techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics, and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This paper serves as a survey of methods and applications, and reviews the last methodological advances in remote sensing image processing.
Resumo:
Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Peer-reviewed
Resumo:
In this paper we describe a proposal for defining the relationships between resources, users and services in a digital repository. Nowadays, virtual learning environments are widely used but digital repositories are not fully integrated yet into the learning process. Our final goal is to provide final users with recommendation systems and reputation schemes that help them to build a true learning community around the institutional repository, taking into account their educational context (i.e. the courses they are enrolled into) and their activity (i.e. system usage by their classmates and teachers). In order to do so, we extend the basic resource concept in a traditional digital repository by adding all the educational context and other elements from end-users' profiles, thus bridging users, resources and services, and shifting from a library-centered paradigm to a learning-centered one.
Resumo:
The aim of this thesis was to examine emotions in a web-based learning environment (WBLE). Theoretically, the thesis was grounded on the dimensional model of emotions. Four empirical studies were conducted. Study I focused on students’ anxiety and their self-efficacy in computer-using situations. Studies II and III examined the influence of experienced emotions on students’ collaborative visible and non-collaborative invisible activities and lurking in a WBLE. Study II also focused on the antecedents of the emotions students experience in a web-based learning environment. Study IV concentrated on clarifying the differences between emotions experienced in face-to-face and web-based collaborative learning. The results of these studies are reported in four original research articles published in scientific journals. The present studies demonstrate that emotions are important determinants of student behaviour in a web-based learning, and justify the conclusion that interactions on the web can and do have an emotional content. Based on the results of these empirical studies, it can be concluded that the emotions students experience during the web-based learning result mostly from the social interactions rather than from the technological context. The studies indicate that the technology itself is not the only antecedent of students’ emotional reactions in the collaborative web-based learning situations. However, the technology itself also exerted an influence on students’ behaviour. It was found that students’ computer anxiety was associated with their negative expectations of the consequences of using technology-based learning environments in their studies. Moreover, the results also indicated that student behaviours in a WBLE can be divided into three partially overlapping classes: i) collaborative visible ii) non-collaborative invisible activities, and iii) lurking. What is more, students’ emotions experienced during the web-based learning affected how actively they participated in such activities in the environment. Especially lurkers, i.e. students who seldom participated in discussions but frequently visited the online environment, experienced more negatively valenced emotions during the courses than did the other students. This result indicates that such negatively toned emotional experiences can make the lurking individuals less eager to participate in other WBLE courses in the future. Therefore, future research should also focus more precisely on the reasons that cause individuals to lurk in online learning groups, and the development of learning tasks that do not encourage or permit lurking or inactivity. Finally, the results from the study comparing emotional reactions in web-based and face-to-face collaborative learning indicated that the learning by means of web-based communication resulted in more affective reactivity when compared to learning in a face-to-face situation. The results imply that the students in the web-based learning group experienced more intense emotions than the students in the face-to-face learning group.The interpretations of this result are that the lack of means for expressing emotional reactions and perceiving others’ emotions increased the affectivity in the web-based learning groups. Such increased affective reactivity could, for example, debilitate individual’s learning performance, especially in complex learning tasks. Therefore, it is recommended that in the future more studies should be focused on the possibilities to express emotions in a text-based web environment to ensure better means for communicating emotions, and subsequently, possibly decrease the high level of affectivity. However, we do not yet know whether the use of means for communicating emotional expressions via the web (for example, “smileys” or “emoticons”) would be beneficial or disadvantageous in formal learning situations. Therefore, future studies should also focus on assessing how the use of such symbols as a means for expressing emotions in a text-based web environment would affect students’ and teachers’ behaviour and emotional state in web-based learning environments.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
Tämä kandidaatintyö tutkii tietotekniikan perusopetuksessa keskeisen aiheen,ohjelmoinnin, alkeisopetusta ja siihen liittyviä ongelmia. Työssä perehdytään ohjelmoinnin perusopetusmenetelmiin ja opetuksen lähestymistapoihin, sekä ratkaisuihin, joilla opetusta voidaan tehostaa. Näitä ratkaisuja työssä ovat mm. ohjelmointikielen valinta, käytettävän kehitysympäristön löytäminen sekä kurssia tukevien opetusapuvälineiden etsiminen. Lisäksi kurssin läpivientiin liittyvien toimintojen, kuten harjoitusten ja mahdollisten viikkotehtävien valinta kuuluu osaksitätä työtä. Työ itsessään lähestyy aihetta tutkimalla Pythonin soveltuvuutta ohjelmoinnin alkeisopetukseen mm. vertailemalla sitä muihin olemassa oleviin yleisiin opetuskieliin, kuten C, C++ tai Java. Se tarkastelee kielen hyviä ja huonoja puolia, sekä tutkii, voidaanko Pythonia hyödyntää luontevasti pääasiallisena opetuskielenä. Lisäksi työ perehtyy siihen, mitä kaikkea kurssilla tulisi opettaa, sekä siihen, kuinka kurssin läpivienti olisi tehokkainta toteuttaa ja minkälaiset tekniset puitteet kurssin toteuttamista varten olisi järkevää valita.