971 resultados para refractive index profile


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reverse engineering problem addressed in the present research consists of estimating the thicknesses and the optical constants of two thin films deposited on a transparent substrate using only transmittance data through the whole stack. No functional dispersion relation assumptions are made on the complex refractive index. Instead, minimal physical constraints are employed, as in previous works of some of the authors where only one film was considered in the retrieval algorithm. To our knowledge this is the first report on the retrieval of the optical constants and the thickness of multiple film structures using only transmittance data that does not make use of dispersion relations. The same methodology may be used if the available data correspond to normal reflectance. The software used in this work is freely available through the PUMA Project web page (http://www.ime.usp.br/similar to egbirgin/puma/). (C) 2008 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental results for the activity of water in aqueous solutions of 10 single polyelectrolytes (two polysodium acrylates, two polysodium methacrylates, three polyammonium acrylates, two polysodium ethylene sulfonates, and one polysodium styrene sulfonate) at (298.2 and 323.2) K are reported. The isopiestic method was employed in these experiments with aqueous solutions of sodium chloride as references. The polyelectrolytes were characterized by three averaged molecular masses determined by gel permeation chromatography. Furthermore, the density and the refractive index increments of the aqueous polyelectrolyte solutions are reported. Although a similar pattern for the activity of water was observed for all systems (i.e., the osmotic coefficient increases with rising polyelectrolyte concentration), the experimental results show that this property depends on the monomer type as well as on the size of the polymer chain. The temperature (varied from (298.2 to 323.2) K) has only a small influence on the activity of water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last decades, anti-resonant reflecting optical waveguides (ARROW) have been used in different integrated optics applications. In this type of waveguide, light confinement is partially achieved through an anti-resonant reflection. In this work, the simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by a plasma-enhanced chemical vapor deposition (PECVD) technique, at low temperatures(similar to 300 degrees C), are presented. Silicon oxynitride (SiO(x)N(y)) films were used as core and second cladding layers and amorphous hydrogenated silicon carbide(a-SiC:H) films as first cladding layer. Furthermore, numerical simulations were performed using homemade routines based on two computational methods: the transfer matrix method (TMM) for the determination of the optimum thickness of the Fabry-Perot layers; and the non-uniform finite difference method (NU-FDM) for 2D design and determination of the maximum width that yields single-mode operation. The utilization of a silicon carbide anti-resonant layer resulted in low optical attenuations, which is due to the high refractive index difference between the core and this layer. Finally, for comparison purposes, optical waveguides using titanium oxide (TiO(2)) as the first ARROW layer were also fabricated and characterized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present the simulation, fabrication and characterization of a tunable Bragg filter employing amorphous dielectric films deposited by plasma enhanced chemical vapor deposition technique on a crystalline silicon substrate. The optical device was built using conventional microelectronic processes and consisted of fifteen periodic intervals of Si3N4 layers separated by air with appropriated thickness and lengths to produce transmittance attenuation peaks in the visible region. For this, previous simulations were realized based in the optical parameters of the dielectric film, which were extracted from ellipsometry and profilometry techniques. For the characterization of the optical interferential filter, a 633 nm monochromatic light was injected on the filter, and then the transmitted output light was collected and conducted to a detector through an optical waveguide made also of amorphous dielectric layers. Afterwards, the optical filter was mounted on a Peltier thermoelectric device in order to control the temperature of the optical device. When the temperature of filter changes, a refractive index variation is originated in the dielectric film due to the thermo-optic effect, producing a shift of attenuation peak, which can be well predicted by numerical simulations. This characteristic allows this device to be used as a thermo-optic sensor. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO(2) (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO(2), in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extension of the Adachi model with the adjustable broadening function, instead of the Lorentzian one, is employed to model the optical constants of GaP, InP, and InAs. Adjustable broadening is modeled by replacing the damping constant with the frequency-dependent expression. The improved flexibility of the model enables achieving an excellent agreement with the experimental data. The relative rms errors obtained for the refractive index equal 1.2% for GaP, 1.0% for InP, and 1.6% for InAs. (C) 1999 American Institute of Physics. [S0021-8979(99)05807-7].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extension of Adachi's model with a Gaussian-like broadening function, in place of Lorentzian, is used to model the optical dielectric function of the alloy AlxGa1-xAs. Gaussian-like broadening is accomplished by replacing the damping constant in the Lorentzian line shape with a frequency dependent expression. In this way, the comparative simplicity of the analytic formulas of the model is preserved, while the accuracy becomes comparable to that of more intricate models, and/or models with significantly more parameters. The employed model accurately describes the optical dielectric function in the spectral range from 1.5 to 6.0 eV within the entire alloy composition range. The relative rms error obtained for the refractive index is below 2.2% for all compositions. (C) 1999 American Institute of Physics. [S0021-8979(99)00512-5].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive a nonlinear wave equation for a signal beam which is coupled to a pump beam by two-wave-mixing in a photorefractive crystal. This equation describes self-focusing of the signal beam. We compare two-wave-mixing induced spatial self-focusing of single-pass experiments in a diffusion-type photorefractive crystal and of a photorefractive oscillator using the same crystal. We observe that the nonlinear refractive index change in the oscillator is decreased while increasing resonator losses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.