889 resultados para reduced nicotinamide adenine dinucleotide phosphate
Resumo:
A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Sustainable methods are required to protect newly planted tree seedlings from insect herbivore attack. To this end, here Norway spruce (Picea abies (L.) Karst.) seeds were treated with 2.5 mM nicotinamide (NIC), 2.5 mM nicotinic acid (NIA), 3 mM jasmonic acid (JA) or 0.2 mM 5-azacytidine (5-Aza), and 6-month-old seedlings grown from these seeds were planted at a reforestation area in central Sweden. Attack by pine weevils (Hylobius abietis) was reduced by 50 per cent by NIC treatment, 62.5 per cent by JA treatment and 25 per cent by 5-Aza treatment, when compared with seedlings grown from untreated seeds. Watering 18-month-old spruce seedlings with 2 mM NIC or 2 mM NIA did reduce attack during the first season in the field by 40 and 53 per cent, respectively, compared with untreated plants. Girdling was also reduced by the different treatments. Analysis of conifer seedlings treated with 5-Aza points at a possible involvement of epigenetic mechanisms in this defensive capacity. This is supported by a reduced level of DNA methylation in the needles of young spruce seedlings grown in a greenhouse from NIC-treated seeds. Seed treatment for seedling defense potentiation is simple, inexpensive and also a new approach for forestry with many potential applications.
Resumo:
The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.
Resumo:
In order to determine conditions that may provide greater solubilization of insouluble phosphate, the fungus Aspergillus niger was grown in a stationary culture containing modified citrate medium supplemented with 800 mg fluorapatite per litre. Solubilization of insouluble phosphate increased with fungal growth, reaching a maximum after 11 days of culture. Soluble phosphate levels were correlated with pH of the culture medium but not with titratable acidity values, probably due to the metabolic activity of the fungus resulting from consumption of sugar in the culture medium. Fructose, glucose, xylose, and sucrose were the carbohydrates that favoured fluorapatite solubilization the most when compared with galactose and maltose. Although increasing fructose concentrations in the culture medium favoured mycelial growth, increased total acidity and a fall in pH, soluble phosphate levels were reduced, probably owing to consumption by the rapidly growing fungus. Among the nitrogen sources tested, ammonium salts favoured the production of larger amounts of soluble phosphate than organic nitrogen (peptone or urea) or nitrate, corresponding to the lowest pH and highest titratable acidity values obtained. © 1988 Springer-Verlag.
Resumo:
The term biochar refers to materials with diverse chemical, physical and physicochemical characteristics that have potential as a soil amendment. The purpose of this study was to investigate the P sorption/desorption properties of various slow biochars and one fast pyrolysis biochar and to determine how a fast pyrolysis biochar influences these properties in a degraded tropical soil. The fast pyrolysis biochar was a mixture of three separate biochars: sawdust, elephant grass and sugar cane leaves. Three other biochars were made by slow pyrolysis from three Amazonian tree species (Lacre, Ingá and Embaúba) at three temperatures of formation (400 °C, 500 °C, 600 °C). Inorganic P was added to develop sorption curves and then desorbed to develop desorption curves for all biochar situations. For the slow pyrolysis, the 600 oC biochar had a reduced capacity to sorb P (4-10 times less) relative to those biochars formed at 400 °C and 500 °C. Conversely, biochar from Ingá desorbed the most P. The fast pyrolysis biochar, when mixed with degraded tropical mineral soil, decreased the soil's P sorption capacity by 55% presumably because of the high soluble, inorganic P prevalent in this biochar (909 mg P/kg of biochar). Phosphorus desorption from the fast pyrolysis biochar/soil mixture not only exhibited a common desorption curve but also buffered the soil solution at a value of ca. 0.2 mg/L. This study shows the diversity in P chemistry that can be expected when biochar is a soil amendment and suggests the potential to develop biochars with properties to meet specific objectives. © 2013 British Society of Soil Science.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2'deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2'deoxy) ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5' hydroxyl group of adenosine and Arg(43*) side chain contributes for the ribosyl radical to adopt an unusual C3'-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl-6 and Br-8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser(90) by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr(91)) is responsible for the lack of negative cooperativity of phosphate binding in this enzyme.
Resumo:
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The Pst system is a high-affinity inorganic phosphate transporter found in many bacterial species. Streptococcus mutans, the etiological agent of tooth decay, carries a single copy of the pst operon composed of six cistrons (pstS, pstC1, pstC, pstB, smu.1134 and phoU). Here, we show that deletion of pstS, encoding the phosphate-binding protein, reduces phosphate uptake and impairs cell growth, which can be restored upon enrichment of the medium with high concentrations of inorganic phosphate. The relevance of Pst for growth was also demonstrated in the wild-type strain treated with an anti-PstS antibody. Nevertheless, a reduced ability to bind to saliva-coated surfaces was observed, along with the reduction of extracellular polysaccharide production, although no difference on pH acidification was observed between mutant and wild-type strains. Taken together, the present data indicate that the S.similar to mutans Pst system participates in phosphate uptake, cell growth and expression of virulence-associated traits.
Resumo:
Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP) ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.
Resumo:
BACKGROUND: The aim of the study is to clinically and histologically evaluate the healing of advanced intrabony defects treated with open flap debridement and the adjunct implantation of granular beta tricalcium phosphate (beta-TCP). METHODS: Five patients, each displaying advanced combined 1- and 2-wall intrabony defects around teeth scheduled for extraction or root resection, were recruited. Approximately 6 months after surgery, the teeth or roots were removed together with a portion of their surrounding soft and hard tissues and processed for histologic evaluation. RESULTS: The mean probing depth (PD) was reduced from 10.8 +/- 2.3 mm presurgically to 4.6 +/- 2.1 mm, whereas a mean clinical attachment level (CAL) gain of 5.0 +/- 0.7 mm was observed. The increase in gingival recession was 1.2 +/- 3.2 mm. The histologic evaluation indicated the formation of new cellular cementum with inserting collagen fibers to a varying extent (mean: 1.9 +/- 0.7 mm; range: 1.2 to 3.03 mm) coronal to the most apical extent of the root instrumentation. The mean new bone formation was 1.0 +/- 0.7 mm (range: 0.0 to 1.9 mm). In most specimens, beta-TCP particles were embedded in the connective tissue, whereas the formation of a mineralized bone-like or cementum-like tissue around the particles was only occasionally observed. CONCLUSION: The present data indicates that treatment of intrabony periodontal defects with this beta-TCP may result in substantial clinical improvements such as PD reduction and CAL gain, but this beta-TCP does not seem to enhance the regeneration of cementum, periodontal ligament, and bone.
Resumo:
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Resumo:
In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69-/- DCs, which presented an increased migration to peripheral LNs. Two-photon microscopy analysis showed that once DCs reached the LNs, CD69 deficiency did not alter DC interstitial motility in the LNs. Chemotaxis to sphingosine-1-phosphate (S1P) was enhanced in CD69-/- DCs compared with wild-type DCs. Accordingly, we detected a higher expression of S1P receptor type-1 (S1P(1)) by CD69-/- DCs, whereas S1P(3) expression levels were similar in wild-type and CD69-/- DCs. Moreover, in vivo treatment with S1P analogs SEW2871 and FTY720 during skin sensitization reduced skin DC migration to peripheral LNs. These results suggest that CD69 regulates S1P-induced skin DC migration by modulating S1P(1) function. Together, our findings increase our knowledge on DC trafficking patterns in the skin, enabling the development of new directed therapies using DCs for antigen (Ag) delivery.
Resumo:
Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)gamma, signaling molecules that act downstream of G protein-coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3Kgamma displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3Kgamma alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a G(alphai) protein-coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3Kgamma contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell-expressed PI3Kgamma contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3Kgamma, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell-expressed PI3Kgamma, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress.
Resumo:
Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion.