991 resultados para recrystallization (metallurgy)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mechanism of post-dynamic softening during annealing of a fully dynamically recrystallized (DRX) austenitic Ni–30Fe alloy is proposed. The initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The sub-boundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous Ti-Mo alloy samples with different porosities from 52% to 72% were successfully fabricated by the space-holder sintering method. The pore size of the porous Ti-Mo alloy samples were ranged from 200 to 500 μm. The plateau stress and elastic modulus of the porous Ti-Mo alloy samples increases with the decreasing of the porosity. Moreover, an apatite coating on the Ti-Mo alloy after an alkali and heat treatment was obtained through soaking into a simulated body fluid (SBF). The porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability, bioactivity and mechanical properties mimicking those of natural bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High purity Al single crystals of the Cube (0 0 1)[1 0 0] and rotated Cube (0 1 1)[0 1 ¯ 1] orientations have been deformed in plane strain compression in a channel die. Deformation was carried out at temperatures between 25 and 600 8C up to strains of 1.2. The as-deformed microstructure has been characterised using electron microscopy and electron backscattered diffraction (EBSD).
Annealing was carried out for various times and temperatures. The recrystallized microstructure has been studied using electron microscopy, and the orientation of recrystallized grains determined using EBSD. After cold deformation and annealing both orientations exhibited a random recrystallization texture component. After hot deformation both orientations retained a similar annealing texture to their starting deformation texture. The annealing texture of deformed single crystals was found to be more sensitive to the temperature of deformation than the stability of the orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocompatible porous Ti-16Sn-4Nb alloys were synthesised in quest of a novel tissue engineering biomaterial for bone regeneration. The alloys were prepared from elemental powders via mechanical alloying followed by space-holder sintering. The effects of ball milling variables on the characteristics and mechanical properties of bulk and porous Ti-16Sn-4Nb alloy have been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the structure and properties relationship, surface modification, biocompatibility and bioactivity of a porous Ti-Nb-Zr alloy. The porous alloy exhibited inter-connected porous structure, good biocompatibility and high mechanical strength with an elastic modulus close to that of bone. Porous Ti-Nb-Zr alloys are thus promising biomaterials for hard tissue replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, porous nickel foam samples with pore sizes of 20 μm and 150 μm and porosities of 60 % and 70 % were fabricated by the space-holding sintering method via powder metallurgy. Electron scanning microscopy (SEM) and Image-Pro Plus were used to characterise the morphological features of the porous nickel foam samples. The anisotropic mechanical properties of porous nickel foams were investigated by compressive testing loading in different directions, i.e. the major pore axis and minor pore axis. Results indicated that the nominal stress of the nickel foam samples increases with the decreasing of the porosity. Moreover, the foam sample exhibited significantly higher nominal stress for loading in the direction of the major pore axis than loading in direction of the minor pore axis. It is also noticeable that the nominal stress of the nickel foams increases with the decreasing of the pore size. It seems that the deformation behaviour of the foams with a pore size in the micron-order differs from those with a macro-porous structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interrupted hot compression tests are employed to examine the kinetics of recrystallization in magnesium alloy Mg–3Al–1Zn. It is found that recrystallization results in an increase in the flow stress encountered in subsequent deformation. The increase in flow stress is used to infer the fraction of recrystallization and empirical equations are developed to describe the kinetics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substructure development in an austenitic Ni-30%Fe model alloy was investigated within a dynamic recrystallization (DRX) regime. The substructure characteristics of the deformed matrix and DRX grains were markedly different regardless of the grain size and orientation. The former largely displayed 'organized', banded subgrain arrangements with alternating misorientations, resulting from a limited number of active slip systems. In contrast, the substructure of DRX grains was generally more 'random' and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, suggesting multiple slip. The proposed mechanism of the unique substructure development within DRX grains suggests that the DRX nuclei, forming along pre-existing grain boundaries and triple points, essentially represent grain boundary regions, which experience multiple slip to preserve the compatibility with neighbouring deformed grains. This results in the formation of a complex cell/subgrain structure, which progressively extends as the grain boundary regions expand outwards during DRX growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the hot deformation and subsequent annealing of magnesium alloy AZ31. In particular, the role of strain on the progression of dynamic recrystallization (DRX) and post-deformation recrystallization is investigated. It is found that the grain size developed after post-deformation recrystallization is larger when the deformation strain, and hence the degree of DRX, is low (for strains up to 0.4). Also, the kinetics of post-deformation recrystallization are found to be independent of strain for strain values of 0.4 and above. Whilst increasing strain alters the texture of the un-recrystallized microstructure (for the deformation mode examined), the texture does not change significantly during post-deformation recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is confirmed that a layer of vacuum-evaporated carbon on the surface of a preoriented ultrathin polymer film can lead to an oriented recrystallization of the polymer film. This has been attributed to a strong fixing effect of vacuum-evaporated carbon layer on the film surface of the polymer. To study the origin of the strong fixing effect of vacuum-evaporated carbon layer on the polymer films, the melting and recrystallization behaviors of the preoriented ultrathin PE film with a vacuum-evaporated carbon layer were studied by using atomic force microscopy, electron diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. We found that there exists some extent of chain orientation of carbon-coated polyethylene (PE) preoriented ultrathin film above its melting temperature. These oriented PE chain sequences act as nucleation sites and induce the oriented recrystallization of preoriented PE film from melt. Raman spectroscopy results suggest that new carbon-carbon bonds between the carbon layer and the oriented PE film are created during the process of vacuum carbon evaporation. As a result, some of the PE chain stems are fixed to the coated carbon substrate via covalent bond. Such a bonding has retarded the relaxation of the PE chains at the spot and, therefore, preserves the original orientation of the PE stems at high temperature, which in turn derives the recrystallization of the PE chains in an oriented structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work discusses the recent findings obtained from the microstructural characterization of an austenitic Ni-30%Fe model alloy during metadynamic recrystallization (MDRX) using both EBSD and TEM techniques. The characterization of the grain structure, texture and dislocation substructure evolution of the fully dynamically recrystallized (DRX) microstructure during post deformation annealing revealed a novel softening mechanism occurring under the current experimental conditions. It is proposed that the initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries in correspondence with the well-established MDRX mechanism. However, the sub-boundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains. Consequently, the DRX texture largely remains preserved throughout the annealing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This body of data is the result of an investigation into the effect of grain boundary movement on the characteristics of substructure development in an austenitic Ni-30%Fe model alloy within the DRX regime. Different thermo-mechanical processing routes were employed to produce a range of DRX grain sizes at a given deformation temperature. The development of dislocation substructure was investigated using electron back-scattered diffraction (EBSD) in conjunction with transmission electron microscopy (TEM).