962 resultados para recombinant human bone morphogenetic protein
Resumo:
The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS.
Resumo:
Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.
Resumo:
We reported previously that bone morphogenetic proteins (BMPs) potently suppress CYP17 expression and androgen production by bovine theca interna cells (TC) in vitro. In this study, real-time PCR was used to analyse gene expression in TC and granulosa cell (GC) layers from developing bovine antral follicles (1-18 mm). Abundance of mRNA transcripts for four BMPs (BMP2, BMP4, BMP6, and BMP7) and associated type I (BMPR1A, BMPR1B, ACVR1 and ACVR1B) and type II (BMPR2, ACVR2A and ACVR2B) receptors showed relatively modest, though significant, changes during follicle development. BMP2 was selectively expressed in GC, while BMP6, BMP7 and betaglycan (TGFBR3) were more abundant in TC. Abundance of betaglycan mRNA (inhibin co-receptor) in TC increased progressively (fivefold; P<0.001) as follicles grew from 1-2 to 9-10 mm. This suggests a shift in thecal responsiveness to GC-derived inhibin, produced in increasing amounts as follicles achieve dominance. This prompted us to investigate whether inhibin can function as a physiological antagonist of BMP action on bovine TC in vitro, in a manner comparable to that for activin signalling. BMP4, BMP6 and BMP7 abolished LH-induced androstenedione secretion and suppressed CYP17 mRNA >200-fold (P<0.001), while co-treatment with inhibin-A reversed the suppressive action of BMP in each case (P<0.001). Results support a physiological role for granulosa-derived inhibin as an antagonist of BMP action on thecal androgen synthesis. A shift in intrafollicular balance between thecal BMP signalling (inhibitory for androgen synthesis) and betaglycan-dependent inhibin signalling (stimulatory for androgen synthesis) accords with the physiological requirement to deliver an adequate supply of aromatase substrate to GC of developing follicles.
Resumo:
Insulin-induced glucose uptake by skeletal muscle results from Akt2 activation and is severely impaired during insulin resistance Recently, we and others have demonstrated that BMP9 improves glucose homeostasis in diabetic and non-diabetic rodents. However, the mechanism by which BMP9 modulates insulin action remains unknown. Here we demonstrate that Smad5. a transcription factor activated by BMP9, and Akt2. are upregulated in differentiated L6 myotubes. Smad5, rather than Smad1/8, is downregulated ""in vivo"" and ""in vitro"" by dexamethasone Smad5 knockdown decreased Akt2 expression and serine phosphorylation and insulin-induced glucose uptake, and increased the expression of the lipid phosphatase Ship2. Additionally, binding of Smad5 to Akt2 gene is decreased in dexamethasone-treated rats and Increased in L6 myotubes compared to myoblasts The present study indicates that Smad5 regulates glucose uptake in skeletal muscle by controlling Akt2 expression and phosphorylation These finding reveals Smad5 as a potential target for the therapeutic of type 2 diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We identified a 4-year-old Brazilian boy from a family of Japanese descent and history of consanguinity, who suffered from severe recurrent pneumonia. He carries factor H (FH) deficiency associated with reduced levels of component C9 and low serum levels of C3 and factor B. His mother also presented low levels of these proteins and factor I, while his father and sister had only lower levels of FH. Western blot assays confirmed the complete absence of FH and FHL-1 polypeptides in this patient. Sequencing of the proband`s FH cDNA revealed a homozygous G453A substitution, encoding an Arg(127)His change. His mother, father and sister are heterozygous for this substitution. Despite the absence of FH in the plasma, this protein was detected in the patient`s fibroblasts, suggesting that Arg(127) may be important for FH secretion. Low concentrations of C9 were detected in the proband serum but no mutations in the patient`s C9 gene or promoter have been identified, suggesting that this is a consequence of uncontrolled complement activation and high C9 consumption.
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
Tissue engineering is an important branch of regenerative medicine that uses cells, materials (scaffolds), and suitable biochemical and physicochemical factors to improve or replace specific biological functions. In particular, the control of cell behavior (namely, of cell adhesion, proliferation and differentiation) is a key aspect for the design of successful therapeutical approaches. In this study, poly(lactic-co-glycolic acid) (PLGA) fiber mats were prepared using the electrospinning technology (the fiber diameters were in the micrometer range). Furthermore, the electrospun fiber mats thus formed were functionalized using the layer-by- layer (LbL) technique with chitosan and alginate (natural and biodegradable polyelectrolytes having opposite charges) as a mean for the immobilization of pDNA/dendrimer complexes. The polyelectrolyte multilayer deposition was confirmed by fluorescence spectroscopy using fluorescent-labeled polyelectrolytes. The electrospun fiber mats coated with chitosan and alginate were successfully loaded with complexes of pDNA and poly(amidoamine) (PAMAM) dendrimers (generation 5) and were able of releasing them in a controlled manner along time. In addition, these mats supported the adhesion and proliferation of NIH 3T3 cells and of human mesenchymal stem cells (hMSCs) in their surface. Transfection experiments using a pDNA encoding for luciferase showed the ability of the electrospun fiber mats to efficiently serve as gene delivery systems. When a pDNA encoding for bone morphogenetic protein-2 (BMP-2) was used, the osteoblastic differentiation of hMSCs cultured on the surface of the mats was promoted. Taken together, the results revealed that merging the electrospinning technique with the LbL technique, can be a suitable methodology for the creation of biological active matrices for bone tissue engineering.
Resumo:
The aim of the current study is to evaluate fresh-frozen human bone allografts (FHBAs) used in vertical ridge augmentation clinically and by computed tomography, and to analyze the resulting bone formation and graft resorption. Sixteen FHBAs were grafted in the maxillae and mandibles of 9 patients. The FHBAs, which were provided by the Musculoskeletal Tissue Bank of Marilia Hospital (Unioss), were frozen at -80A degrees C. After 7 months, dental implants were placed and bone parameters were evaluated. Vertical bone formation was measured by computerized tomography before (T0) and at 7 months (T1) after the surgical procedure. Bone graft resorption was measured clinically from a landmark screw head using a periodontal probe. The results were analyzed by Student's t-test. Significant differences existed in the bone formation values at T0 and T1, with an average change of 4.03 +/- A 1.69 mm. Bone graft resorption values were 1.0 +/- A 0.82 mm (20%). Implants were placed with varying insertion torque values (35-45 Ncm), and achieved primary stability. This study demonstrates that FHBAs promote satisfactory vertical bone formation with a low resorption rates, good density, and primary implant stability.
Resumo:
The aim of this paper was report the clinical, radiographic, and histological case of adenomatoid odontogenic tumour (AOT) in adolescent woman as well as present the reconstructive treatment of AOT using fresh-frozen human bone graft with guided bone regeneration. AOT is a benign, noninvasive lesion with slow but progressive growth. Biopsy and microscopic examination confirmed the presence of an AOT. Treatment was conservative and the prognosis was excellent. The patient has been followed-up for without recurrence. The use of fresh-frozen human bone graft can be a safe choice for reconstruction of the bone defects to treat AOT.
Resumo:
OBJETIVO: Avaliar a capacidade osteo-regenerativa de dois biomateriais utilizando um modelo de defeito segmentar efetuado nas diáfises do rádio de coelhos. MÉTODOS: O defeito direito foi preenchido com pool de proteínas morfogenéticas ósseas (pBMPs) e hidroxiapatita em pó ultrafina absorvível (HA) combinada com matriz óssea inorgânica desmineralizada e colágeno, derivados do osso bovino (Grupo A). O defeito esquerdo foi preenchido com matriz óssea desmineralizada bovina com pBMPs e hidroxiapatita em pó ultrafina absorvível (Grupo B). em ambos os defeitos utilizou-se membrana reabsorvível de cortical bovina desmineralizada para reter os biomateriais no defeito ósseo e guiar a regeneração tecidual. Os coelhos foram submetidos à eutanásia aos 30, 90 e 150 dias após a cirurgia. Foram efetuados exames radiográficos, tomográficos e histológicos em todos os espécimes. RESULTADOS: Aos 30 dias de pós-cirúrgico, o osso cortical desmineralizado foi totalmente reabsorvido em ambos os grupos. A HA tinha reabsorvido nos defeitos do Grupo A, mas persistiu nos do Grupo B. Uma reação de corpo estranho foi evidente com ambos os produtos, porém mais pronunciada no Grupo B. Aos 90 dias os defeitos do grupo B tinham mais formação óssea que os do Grupo A. Entretanto, aos 150 dias após a cirurgia, nenhum tratamento havia promovido o completo reparo do defeito. CONCLUSÃO: Os biomateriais testados contribuíram pouco ou quase nada para a reconstituição do defeito segmentar.
Resumo:
OBJETIVO: Investigar a influência de Proteínas Morfogenéticas Ósseas de origem bovina (bBMPs) ligadas a hidroxiapatita mais colágeno na consolidação de fraturas instáveis do rádio. MÉTODOS: em 15 coelhos com aproximadamente 5,5 meses de idade e peso médio de 3,5kg foi realizada uma fratura transversa na porção média da diáfise do rádio de ambos os membros. Na fratura do rádio direito foi aplicada mistura de bBMPs ligadas à hidroxiapatita (bBMP-HA) e colágeno bovino como aglutinante e na do rádio esquerdo, considerada controle, nenhum tratamento foi usado. Os coelhos (cinco por período) foram submetidos à eutanásia aos 30, 60 e 90 dias após a cirurgia para realização do processamento histológico e análise microscópica. RESULTADOS: A análise histológica descritiva revelou que a consolidação foi similar para os membros tratado e controle. Pela análise histomorfométrica, a área de novo osso foi em média 867442,16 mm², 938743.00 mm² e 779621,06 mm² para os membros controles e 841118,47 mm², 788038,76mm² e 618587,24 mm² para os membros tratados, aos 30, 60 e 90 dias, respectivamente. Desta forma, aos 60 dias de pós-operatório a área de novo osso foi 12.17% maior no membro tratado com bBMP-HA/colágeno em relação ao membro controle (p<0.05, teste de Tukey). em ambos os membros a área de novo osso aumentou durante o período experimental até a total consolidação da fratura. CONCLUSÃO: Baseado nos resultados obtidos foi possível concluir que a mistura de bBMP-HA/colágeno induziu pequena, porém significante melhora na consolidação da fratura.
Resumo:
Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.