901 resultados para radius-ulna
Resumo:
Doppler images in Balmer, He I, He II and C II lines, and simultaneous I-band photometry of the polar MR Ser are presented and analyzed. The Balmer and Helium Doppler tomograms, of this bright polar at high mass transfer state show the emission from the accretion flow and the heated surface of the companion star. As a result of a comparison between the Doppler tomograms, the ionization structure of the flow could be constrained. The highest ionization region was found in the vicinity of the magnetospheric radius. Photoionization modeling of the accretion column indicates that the Balmer and Helium emission line production in this system can be explained only by the central soft X-ray illumination. The orbital ephemeris of MR Ser has been revised.
Resumo:
Aims. We present a dynamical analysis of the galaxy cluster Abell 1942 based on a set of 128 velocities obtained at the European Southern Observatory. Methods. Data on individual galaxies are presented and the accuracy of the determined velocities as some properties of the cluster are discussed. We have also made use of publicly available Chandra X-ray data. Results. We obtained an improved mean redshift value z = 0.22513 +/- 0.0008 and velocity dispersion sigma = 908(139)(+147) km s(-1). Our analysis indicates that inside a radius of similar to 1.5 h(70)(-1) Mpc (similar to 7 arcmin) the cluster is well relaxed, without any remarkable features and the X-ray emission traces the galaxy distribution fairly well. Two possible optical substructures are seen at similar to 5 arcmin from the centre in the northwest and the southwest directions, but are not confirmed by the velocity field. These clumps are, however, kinematically bound to the main structure of Abell 1942. X-ray spectroscopic analysis of Chandra data resulted in a temperature kT = 5.5+/-0.5 keV and metal abundance Z = 0.33 +/- 0.15 Z(circle dot). The velocity dispersion corresponding to this temperature using the T(X-sigma) scaling relation is in good agreement with the measured galaxy velocities. Our photometric redshift analysis suggests that the weak lensing signal observed to the south of the cluster and previously attributed to a ""dark clump"" is produced by background sources, possibly distributed as a filamentary structure.
The qWR star HD 45166 - II. Fundamental stellar parameters and evidence of a latitude-dependent wind
Resumo:
Context. The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i = 0.77 degrees +/- 0.09 degrees), HD 45166 is an ideal laboratory for wind-structure studies. Aims. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. Methods. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated to study the line-profile variations. Results. Abundances and stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of T(eff) = 50 000 +/- 2000 K, a luminosity of log(L/L(circle dot)) = 3.75 +/- 0.08, and a corresponding photospheric radius of R(phot) = 1.00 R(circle dot). The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is. M = 2.2 x 10(-7) M(circle dot) yr(-1), and the wind terminal velocity is v(infinity) = 425 km s(-1). The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8: 1 from equator to pole. If a high velocity polar wind is present (similar to 1200 km s(-1)), the minimum density contrast is reduced to 4:1. Conclusions. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. While for WR stars v(infinity)/v(esc) > 1.5, in the case of HD 45166 it is much smaller (v(infinity)/v(esc) = 0.32). In addition, the efficiency of momentum transfer is eta = 0.74, which is at least 4 times smaller than in a typical WR. We find evidence for the presence of a wind compression zone, since the equatorial wind density is significantly higher than the polar wind. The TVS supports the presence of such a latitude-dependent wind and a variable absorption/scattering gas near the equator.
Resumo:
Context. The luminous material in clusters of galaxies exists in two forms: the visible galaxies and the X-ray emitting intra-cluster medium. The hot intra-cluster gas is the major observed baryonic component of clusters, about six times more massive than the stellar component. The mass contained within visible galaxies is approximately 3% of the dynamical mass. Aims. Our aim was to analyze both baryonic components, combining X-ray and optical data of a sample of five galaxy clusters (Abell 496, 1689, 2050, 2631 and 2667), within the redshift range 0.03 < z < 0.3. We determined the contribution of stars in galaxies and the intra-cluster medium to the total baryon budget. Methods. We used public XMM-Newton data to determine the gas mass and to obtain the X-ray substructures. Using the optical counterparts from SDSS or CFHT we determined the stellar contribution. Results. We examine the relative contribution of galaxies, intra-cluster light and intra-cluster medium to baryon budget in clusters through the stellar-to-gas mass ratio, estimated with recent data. We find that the stellar-to-gas mass ratio within r(500) (the radius within which the mean cluster density exceeds the critical density by a factor of 500), is anti-correlated with the ICM temperature, which range from 24% to 6% while the temperature ranges from 4.0 to 8.3 keV. This indicates that less massive cold clusters are more prolific star forming environments than massive hot clusters.
Resumo:
Context. In April 2004, the first image was obtained of a planetary mass companion (now known as 2M 1207 b) in orbit around a self-luminous object different from our own Sun (the young brown dwarf 2MASSW J 1207334-393254, hereafter 2M 1207 A). That 2M 1207 b probably formed via fragmentation and gravitational collapse offered proof that such a mechanism can form bodies in the planetary mass regime. However, the predicted mass, luminosity, and radius of 2MI207 b depend on its age, distance, and other observables, such as effective temperature. Aims. To refine our knowledge of the physical properties of 2M 1207 b and its nature, we accurately determined the distance to the 2M 1207 A and b system by measuring of its trigonometric parallax at the milliarcsec level. Methods. With the ESO NTT/SUS12 telescope, we began a campaign of photometric and astrometric observations in 2006 to measure the trigonometric parallax of 2M 1207 A. Results. An accurate distance (52.4 +/- 1.1 pc) to 2M1207A was measured. From distance and proper motions we derived spatial velocities that are fully compatible with TWA membership. Conclusions. With this new distance estimate, we discuss three scenarios regarding the nature of 2M 1207 b: (1) a cool (1150 +/- 150 K) companion of mass 4 +/- 1 M-Jup (2) a warmer (1600 +/- 100 K) and heavier (8 +/- 2 M-Jup) companion occulted by an edge-on circumsecondary disk, or (3) a hot protoplanet collision afterglow.
Resumo:
Context. Fossil systems are defined to be X- ray bright galaxy groups ( or clusters) with a two- magnitude difference between their two brightest galaxies within half the projected virial radius, and represent an interesting extreme of the population of galaxy agglomerations. However, the physical conditions and processes leading to their formation are still poorly constrained. Aims. We compare the outskirts of fossil systems with that of normal groups to understand whether environmental conditions play a significant role in their formation. We study the groups of galaxies in both, numerical simulations and observations. Methods. We use a variety of statistical tools including the spatial cross- correlation function and the local density parameter Delta(5) to probe differences in the density and structure of the environments of "" normal"" and "" fossil"" systems in the Millennium simulation. Results. We find that the number density of galaxies surrounding fossil systems evolves from greater than that observed around normal systems at z = 0.69, to lower than the normal systems by z = 0. Both fossil and normal systems exhibit an increment in their otherwise radially declining local density measure (Delta(5)) at distances of order 2.5 r(vir) from the system centre. We show that this increment is more noticeable for fossil systems than normal systems and demonstrate that this difference is linked to the earlier formation epoch of fossil groups. Despite the importance of the assembly time, we show that the environment is different for fossil and non- fossil systems with similar masses and formation times along their evolution. We also confirm that the physical characteristics identified in the Millennium simulation can also be detected in SDSS observations. Conclusions. Our results confirm the commonly held belief that fossil systems assembled earlier than normal systems but also show that the surroundings of fossil groups could be responsible for the formation of their large magnitude gap.
Resumo:
We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M(p) = 3.47 +/- 0.38 M(Jup), a radius R(p) = 1.31 +/- 0.18 R(Jup), and a density rho(p) = 2.2 +/- 0.8 g cm(-3). It orbits a G9V star with a mass M(*) = 0.95 +/- 0.15 M(circle dot), a radius R(*) = 1.00 +/- 0.13 R(circle dot), and a rotation period P(rot) = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the RossiterMcLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 degrees +/- 20 degrees +/- (sky-projected value lambda = -10 degrees +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.
Transiting exoplanets from the CoRoT space mission XV. CoRoT-15b: a brown-dwarf transiting companion
Resumo:
We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12(-0.15)(+0.30) R(Jup) and a mass of 63.3 +/- 4.1 M(Jup), and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system.
Resumo:
Context. B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically greater than or similar to 1 kpc). Aims. From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57 degrees 2874. Methods. For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Results. Thanks to the short computing time required by FRACS (<10 s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57 degrees 2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. Conclusions. The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
The A1763 superstructure at z = 0.23 contains the first galaxy filament to be directly detected using mid-infrared observations. Our previous work has shown that the frequency of starbursting galaxies, as characterized by 24 mu m emission is much higher within the filament than at either the center of the rich galaxy cluster, or the field surrounding the system. New Very Large Array and XMM-Newton data are presented here. We use the radio and X-ray data to examine the fraction and location of active galaxies, both active galactic nuclei (AGNs) and starbursts (SBs). The radio far-infrared correlation, X-ray point source location, IRAC colors, and quasar positions are all used to gain an understanding of the presence of dominant AGNs. We find very few MIPS-selected galaxies that are clearly dominated by AGN activity. Most radio-selected members within the filament are SBs. Within the supercluster, three of eight spectroscopic members detected both in the radio and in the mid-infrared are radio-bright AGNs. They are found at or near the core of A1763. The five SBs are located further along the filament. We calculate the physical properties of the known wide angle tail (WAT) source which is the brightest cluster galaxy of A1763. A second double lobe source is found along the filament well outside of the virial radius of either cluster. The velocity offset of the WAT from the X-ray centroid and the bend of the WAT in the intracluster medium are both consistent with ram pressure stripping, indicative of streaming motions along the direction of the filament. We consider this as further evidence of the cluster-feeding nature of the galaxy filament.
Resumo:
Aims. We investigate the time-varying patterns in line profiles, V/R, and radial velocity of the Be star HD 173948 (lambda Pavonis). Methods. Time series analyses of radial velocity, V/R, and line profiles of He I, Fe II, and Si II were performed with the Cleanest algorithm. An estimate of the stellar rotation frequency was derived from the stellar mass and radius in the Roche limit by adopting an aspect angle i derived from the fittings of non-LTE model spectra affected by rotation. The projected rotation velocity, necessary as input for the spectral synthesis procedure, was evaluated from the Fourier transform of the rotation profiles of all neutral helium lines in the optical range. Results. Emission episodes in Balmer and He i lines, as well as V/R cyclic variations, are reported for spectra observed in year 1999, followed by a relatively quiescent phase (2000) and then again a new active epoch (2001). From time series analyses of line profiles, radial velocities, and V/R ratios, four signals with high confidence levels are detected: nu(1) = 0.17 +/- 0.02, nu(2) = 0.49 +/- 0.05, nu(3) = 0.82 +/- 0.03, and nu(4) = 1.63 +/- 0.04 c/d. We interpret nu 4 as a non-radial pulsation g-mode, nu 3 as a signal related to the orbital timescale of ejected material, which is near the theoretical rotation frequency 0.81 c/d inferred from the fitting of the models taken into account for gravity darkening. The signals nu(1) and nu(2) are viewed as aliases of nu(3) and nu(4).
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M(*) = 1.08 +/- 0.08 M(circle dot), R(*) = 1.1 +/- 0.1 R(circle dot), T(eff) = 5675 +/- 80 K). This new planet, CoRoT-12b, has a mass of 0.92 +/- 0.07 M(Jup) and a radius of 1.44 +/- 0.13 R(Jup). Its low density can be explained by standard models for irradiated planets.