917 resultados para radial hydraulic conductivity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A contaminant plume due to leachate infiltration was found in the solid waste landfill from Bauru, SP. The soil hydraulic conductivity (K) is an important parameter to understand the moving of this plume. This paper intends to show representative K values for the soils that occur in the vicinity of this landfill determined by field and laboratory tests. There are four soil types in the area: colluvium, alluvium, sandstone residual soil and the sandstone. Laboratory tests were performed using constant and variable head in rigid and flexible wall permeameters. Slug tests and hydraulic conductivity tests with the Guelph permeameter were also carried out in situ in the area. Representative K values of 3.7x10-7 m/s for the saturated zone and 2.4x10-8 m/s for the unsaturated zone were determined for the residual soil. A K value of 5.3x10-5 m/s was obtained for the colluvium soil. A great variation of K with depth was observed for the alluvium and the assumed average values for the saturated zone were 7.9x10-7 m/s and 1.1x10-4 m/s for the unsaturated surficial layer. An average K value of 3.3x10-8 m/s was determined in laboratory for the sandstone and it was assumed representative for this material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water management in any area is highly important to the success of many business and also of life and the understanding of your relationship with the environment brings better control to its demand. I.e. hydrogeological studies are needed under better understanding of the behavior of an aquifer, so that its management is done so as not to deplete or harm it. The objective of this work is the numerical modeling in transient regime of a portion of the Rio Claro aquifer formation in order to get answers about its hydrogeological parameters, its main flow direction and also its most sensitive parameters. A literature review and conceptual characterization of the aquifer, combined with field campaigns and monitoring of local water level (NA), enabled the subsequent construction of the mathematical model by finite elements method, using the FEFLOW 6.1 ® computational algorithm. The study site includes the campus of UNESP and residential and industrial areas of Rio Claro city. Its area of 9.73 km ² was divided into 318040 triangular elements spread over six layers, totaling a volume of 0.25 km³. The local topography and geological contacts were obtained from previous geological and geophysical studies as well as profiles of campus wells and SIAGAS / CPRM system. The seven monitoring wells on campus were set up as observation points for calibration and checking of the simulation results. Sampling and characterization of Rio Claro sandstones shows up a high hydrological and lithological heterogeneity for the aquifer formation. The simulation results indicate values of hydraulic conductivity between 10-6 and 10-4 m / s, getting the Recharge/Rainfall simulation in transient ratio at 13%. Even with the simplifications imposed on the model, it was able to represent the fluctuations of local NA over a year of monitoring. The result was the exit of 3774770 m³ of water and the consequently NA fall. The model is considered representative for the...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a field experiment performed in Lins County (Sao Paulo State, Brazil), treated sewage effluent (TSE) irrigation increased sugarcane yield but caused an excessive increase in the exchangeable sodium percentage (ESP) and clay dispersion after 16 months due to an intense irrigation regime (2500 mm/16 months) with sodium rich effluents. After two additional complete cycles with lower TSE irrigation rates (1200 mm year(-1)), 1700 kg ha(-1) of phosphogypsum was added to a section of the irrigated plots to evaluate its residence time and its implications on Na+ dynamics and other soil properties. Undisturbed soil cores were taken 2 years after phosphogypsum application to verify soil physical properties up to 0.2 m depth, and disturbed soil samples were taken every year up to 1 m depth for chemical analyses. After 5 years of consecutive TSE irrigation (2005-2010), soil acidity (pH approximate to 5) and basic cations (Ca approximate to 12, Mg approximate to 6 and K approximate to 2 mmol(c) kg(-1)) were maintained in adequate conditions for plant development without the necessity of liming, while acidity was increased (pH approximate to 4.5) and Ca (approximate to 9 mmol(c) kg(-1)), and the Mg (approximate to 4.5 mmol(c) kg(-1)) concentration decreased in the rainfed without phosphogypsum treatment. An increase in water retention capacity at -30 (from 0.14 to 0.17 m(3) m(-3)) and -1500 kPa (from 0.08 to 0.12 m(3) m(-3)) potentials was also observed in all TSE irrigated treatments. The plots with a phosphogypsum treatment showed average increases of 2 mmol(c) kg(-1) of Ca2+ and 7 mg kg(-1) of S-SO42- in all soil profiles and an average reduction of 2 mmol(c) kg(-1) of Na+ up to 0.4 m from 2008 to 2009. However, the extent of the chemical effects was greater after the first year compared to the second year. The high concentration of Na+ found in previous studies performed in the same area returned to low concentrations after continued TSE irrigation at lower rates, even without the phosphogypsum application. An unusual phosphorus migration was observed to the 0.4-0.8 m soil layer as a result of TSE irrigation, most likely due to a high pH and a Na carbonate-dominated TSE. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]The geometry and the hydraulic conductivity of the unsaturated zone is difficult to study from traditional techniques, like samples from trenches that normally provide surficial data or boreholes, that are expensive and provide local information. Non-destructive geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where the lava flows and pyroclastic deposits have a wide range of values depending on the degree of fracturing and weathering of lava flows, and porosity and texture of the pyroclastic deposits. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria) has conducted a campaign of electrical resistivity tomography profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poröse Medien spielen in der Hydrosphäre eine wesentliche Rolle bei der Strömung und beim Transport von Stoffen. In diesem Raum finden komplexe Prozesse statt: Advektion, Kon-vektion, Diffusion, hydromechanische Dispersion, Sorption, Komplexierung, Ionenaustausch und Abbau. Die strömungsmechanischen- und die Transportverhältnisse in porösen Medien werden direkt durch die Geometrie des Porenraumes selbst und durch die Eigenschaften der transportierten (oder strömenden) Medien bestimmt. In der Praxis wird eine Vielzahl von empirischen Modellen verwendet, die die Eigenschaften des porösen Mediums in repräsentativen Elementarvolumen wiedergeben. Die Ermittlung der in empirischen Modellen verwendeten Materialparameter erfolgt über Labor- oder Feldbestimmungsmethoden. Im Rahmen dieser Arbeit wurde das Computer-modell PoreFlow entwickelt, welches die hydraulischen Eigenschaften eines korngestützten porösen Mediums aus der mikroskopischen Modellierung des Fluidflusses und Transportes ableitet. Das poröse Modellmedium wird durch ein dreidimensionales Kugelpackungsmodell, zusam-mengesetzt aus einer beliebigen Kornverteilung, dargestellt. Im Modellporenraum wird die Strömung eines Fluids basierend auf einer stationären Lösung der Navier-Stokes-Gleichung simuliert. Die Ergebnisse der Modellsimulationen an verschiedenen Modellmedien werden mit den Ergebnissen von Säulenversuchen verglichen. Es zeigt sich eine deutliche Abhängigkeit der Strömungs- und Transportparameter von der Porenraumgeometrie sowohl in den Modell-simulationen als auch in den Säulenexperimenten.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’acquifero freatico costiero ravennate è intensamente salinizzato fino a diversi km nell’entroterra. Il corpo dell’acquifero è formato da sabbie che poggiano su un substrato argilloso ad una profondità media di 25 m, i depositi affioranti sono sabbie e argille. Il lavoro svolto consiste in una caratterizzazione dello stato di salinizzazione con metodologie indirette (geoelettrica) e metodologie dirette (letture dei parametri fisici delle acque in pozzo). I sondaggi elettrici verticali (V.E.S.) mostrano stagionalità dovuta alle differenti quantità di pioggia e quindi di ricarica, le aree con depositi superficiali ad alta conducibilità idraulica (sabbie) hanno una lente d’acqua dolce compresa tra 0,1 e 2,25 m di spessore, al di sotto della quale troviamo una zona di mescolamento con spessori che vanno da 1,00 a 12,00 m, mentre quando in superficie abbiamo depositi a bassa conducibilità idraulica (limi sabbiosi e argille sabbiose) la lente d’acqua dolce scompare e la zona di mescolamento è sottile. Le misure dirette in pozzo mostrano una profondità della tavola d’acqua quasi ovunque sotto il livello del mare in entrambi i mesi monitorati, Giugno e Dicembre 2010, presentando una profondità leggermente maggiore nel mese di Dicembre. Dalla ricostruzione litologica risulta un acquifero composto da 4×109 m3 di sabbia, per cui ipotizzando una porosità media del 30% sono presenti 1,2×109 m3 di acqua. Dalla modellazione numerica (Modflow-SEAWAT 2000) risulta che l’origine dell’acqua salata che si trova in falda trova più facilmente spiegazione ipotizzando la sua presenza fin dalla formazione dell’acquifero, residuo delle acque marine che regredivano. Un’altra problematica analizzata è valutare l’applicazione della metodologia a minifiltri in uno studio sulla salinizzazione delle acque di falda. É stata implementata la costruzione di un transetto sperimentale, che ha permesso la mappatura dell’interfaccia acqua dolce/salmastra/salata con una precisione finora non raggiungibile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to evaluate the chemical compatibility of model soil-bentonite backfills containing multiswellable bentonite (MSB) relative to that of similar backfills containing untreated sodium (Na) bentonite or a commercially available, contaminant resistant bentonite (SW101). Flexible-wall tests were conducted on consolidated backfill specimens (effective stress =34.5 kPa) containing clean sand and 4.5–5.7% bentonite (by dry weight) using tap water and calcium chloride (CaCl2) solutions (10–1,000 mM) as the permeant liquids. Final values of hydraulic conductivity (k) and intrinsic permeability (K) to the CaCl2 solutions were determined after achieving both short-term termination criteria as defined by ASTM D5084 and long-term termination criteria for chemical equilibrium between the influent and effluent. Specimens containing MSB exhibited the smallest increases in k and K upon permeation with a given CaCl2 solution relative to specimens containing untreated Na bentonite or SW101. However, none of the specimens exhibited more than a five-fold increase in k or K, regardless of CaCl2 concentration or bentonite type. Final k values for specimens permeated with a given CaCl2 solution after permeation with tap water were similar to those for specimens of the same backfill permeated with only the CaCl2 solution, indicating that the order of permeation had no significant effect on k. Also, final k values for all specimens were within a factor of two of the k measured after achieving the ASTM D5084 termination criteria. Thus, use of only the ASTM D5084 criteria would have been sufficient to obtain reasonable estimates of long-term hydraulic conductivity for the specimens in this study.