882 resultados para query rewriting
Resumo:
"Research supported in part under NSF grant MCS 77-22830."
Resumo:
Mode of access: Internet.
Resumo:
Kept up to date by "revised" or replacement vols. ; subtitle varies.
Resumo:
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.
Resumo:
In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.
Resumo:
Semantic data models provide a map of the components of an information system. The characteristics of these models affect their usefulness for various tasks (e.g., information retrieval). The quality of information retrieval has obvious important consequences, both economic and otherwise. Traditionally, data base designers have produced parsimonious logical data models. In spite of their increased size, ontologically clearer conceptual models have been shown to facilitate better performance for both problem solving and information retrieval tasks in experimental settings. The experiments producing evidence of enhanced performance for ontologically clearer models have, however, used application domains of modest size. Data models in organizational settings are likely to be substantially larger than those used in these experiments. This research used an experiment to investigate whether the benefits of improved information retrieval performance associated with ontologically clearer models are robust as the size of the application domains increase. The experiment used an application domain of approximately twice the size as tested in prior experiments. The results indicate that, relative to the users of the parsimonious implementation, end users of the ontologically clearer implementation made significantly more semantic errors, took significantly more time to compose their queries, and were significantly less confident in the accuracy of their queries.
Resumo:
Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly
Resumo:
Multiresolution (or multi-scale) techniques make it possible for Web-based GIS applications to access large dataset. The performance of such systems relies on data transmission over network and multiresolution query processing. In the literature the latter has received little research attention so far, and the existing methods are not capable of processing large dataset. In this paper, we aim to improve multiresolution query processing in an online environment. A cost model for such query is proposed first, followed by three strategies for its optimization. Significant theoretical improvement can be observed when comparing against available methods. Application of these strategies is also discussed, and similar performance enhancement can be expected if implemented in online GIS applications.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.