935 resultados para pyramidal patterned substrate
Resumo:
Glucose-6-phosphate dehydrogenase (G6PD) activity and the affinity for its substrate glucose-6-phosphate were investigated under conditions similar to the physiological environment in terms of ionic strength (I: 0.188), cation concentration, pH 7.34, and temperature (37oC). A 12.4, 10.4 and 21.4% decrease was observed in G6PD B, G6PD A+ and G6PD A- activities, respectively. A Km increase of 95.1, 94.4 and 95.4% was observed in G6PD B, G6PD A+ and G6PD A-, respectively, leading to a marked decrease in affinity. In conclusion, the observation of the reduced activity and affinity for its natural substrate reflects the actual pentose pathway rate. It also suggests a much lower NADPH generation, which is crucial mostly in G6PD-deficient individuals, whose NADPH availability is poor.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
The protease ZapA, secreted by Proteus mirabilis, has been considered to be a virulence factor of this opportunistic bacterium. The control of its expression requires the use of an appropriate methodology, which until now has not been developed. The present study focused on the replacement of azocasein with fluorogenic substrates, and on the definition of enzyme specificity. Eight fluorogenic substrates were tested, and the peptide Abz-Ala-Phe-Arg-Ser-Ala-Ala-Gln-EDDnp was found to be the most convenient for use as an operational substrate for ZapA. A single peptide bond (Arg-Ser) was cleaved with a Km of 4.6 µM, a k cat of 1.73 s-1, and a catalytic efficiency of 376 (mM s)-1. Another good substrate for ZapA was peptide 6 (Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Gln-EDDnp) which was cleaved at a single bond (Phe-Ser) with a Km of 13.6 µM, a k cat of 3.96 s-1 and a catalytic efficiency of 291 (mM s)-1. The properties of the amino acids flanking the scissile bonds were also evaluated, and no clear requirement for the amino acid residue at P1 was found, although the enzyme seems to have a preference for a hydrophobic residue at P2.
Resumo:
The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.
Resumo:
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Resumo:
Although the metabolism of early bovine embryos has not been fully elucidated, several publications have addressed this important issue to improve culture conditions for cattle reproductive biotechnologies, with the ultimate goal of producing in vitro embryos similar in quality to those developing in vivo. Here, we review general aspects of bovine embryo metabolism in vitro and in vivo, and discuss the use of metabolic analysis of embryos produced in vitro to assess viability and predict a viable pregnancy after transference to the female tract.
Resumo:
The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous treatment as a substrate.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.
Resumo:
1. Triarylamminium radical-cation complexes. The detailed study of manganese, copper and nickel metal-radical complexes with triarylamminium ligands was conducted. Stable, neutral and pseudo-octahedral coordination monometallic complexes with simple monodentate 2,2`-bipyridine ligand containing a redox-active N,N`-(4,4`-dimethoxydiphenyl-amino) substituent were synthesized and fully characterized. The one-electron oxidation process and formation of persistent radical-cation complexes was observed by cyclic voltammetry and spectroelectrochemical measurements. Evans method measurements were performed with radical-cation complexes generated by chemical one-electron oxidation with NOPF6 in acetonitrile. The experimental results indicate ferromagnetic coupling between metal and triarylamminium cation in manganese (II) complex and antiferromagnetic coupling in nickel (II) complex. This data is supported by DFT calculations which also lend weight to the spin polarization mechanism as an operative model for magnetic exchange coupling. Neutral bimetallic complexes with a new ditopic ligand were synthesized and fully characterized, including magnetic and electrochemical studies. Chemical oxidation of these precursor complexes did not generate radical-cations, but dicationic complexes, which was confirmed by UV-vis and EPR-experiments, as well as varied temperature magnetic measurements. DFT calculations for radical-cation complexes are included. A synthetic pathway for polytopic ligand with multiple redox-active triarylamine sites was developed. The structure of the ligand is presumably suitable for -spin polarization exchange model and allows for production of polymetallic complexes having high spin ground states. 2. Base-catalyzed hydrosilylation. A simple reductive base-catalyzed hydrosilation of aldehydes and ketones was adapted to the use of the cheap, safe, and non-toxic polymethylhydrosiloxane (PMHS) instead of the common PhSiH3 and (EtO)3SiH, which present significant cost and safety concerns, respectively. The conversion of silane into pentacoordinate silicate species upon addition of a base was studied in details for the cases of phenyl silane and PMHS and is believed to be essential for the hydrosilylation process. We discovered that nucleophiles (a base or fluoride-anion) induced the rearrangement of PMHS and TMDS into light silanes: MeSiH3 and Me2SiH2, respectively. The reductive properties of PMHS under basic conditions can be attributed to the formation of methyl silane and its conversion into a silicate species. A procedure for the generation of methyl silane and its use in further efficient reductions of aldehydes and ketones has been developed. The protocol was extended to the selective reduction of esters and tertiary amides into alcohols and aldimines into amines with good isolated yields and reduction of heterocyclic compounds was attempted.
Resumo:
Les systèmes cholinergique et dopaminergique jouent un rôle prépondérant dans les fonctions cognitives. Ce rôle est exercé principalement grâce à leur action modulatrice de l’activité des neurones pyramidaux du cortex préfrontal. L’interaction pharmacologique entre ces systèmes est bien documentée mais les études de leurs interactions neuroanatomiques sont rares, étant donné qu’ils sont impliqués dans une transmission diffuse plutôt que synaptique. Ce travail de thèse visait à développer une expertise pour analyser ce type de transmission diffuse en microscopie confocale. Nous avons étudié les relations de microproximité entre ces différents systèmes dans le cortex préfrontal médian (mPFC) de rats et souris. En particulier, la densité des varicosités axonales en passant a été quantifiée dans les segments des fibres cholinergiques et dopaminergiques à une distance mutuelle de moins de 3 µm ou à moins de 3 µm des somas de cellules pyramidales. Cette microproximité était considérée comme une zone d’interaction probable entre les éléments neuronaux. La quantification était effectuée après triple-marquage par immunofluorescence et acquisition des images de 1 µm par microscopie confocale. Afin d’étudier la plasticité de ces relations de microproximité, cette analyse a été effectuée dans des conditions témoins, après une activation du mPFC et dans un modèle de schizophrénie par déplétion des neurones cholinergiques du noyau accumbens. Les résultats démontrent que 1. Les fibres cholinergiques interagissent avec des fibres dopaminergiques et ce sur les mêmes neurones pyramidaux de la couche V du mPFC. Ce résultat suggère différents apports des systèmes cholinergique et dopaminergique dans l’intégration effectuée par une même cellule pyramidale. 2. La densité des varicosités en passant cholinergiques et dopaminergiques sur des segments de fibre en microproximité réciproque est plus élevée comparé aux segments plus distants les uns des autres. Ce résultat suggère un enrichissement du nombre de varicosités axonales dans les zones d’interaction. 3. La densité des varicosités en passant sur des segments de fibre cholinergique en microproximité de cellules pyramidales, immunoúactives pour c-Fos après une stimulation visuelle et une stimulation électrique des noyaux cholinergiques projetant au mPFC est plus élevée que la densité des varicosités de segments en microproximité de cellules pyramidales non-activées. Ce résultat suggère un enrichissement des varicosités axonales dépendant de l’activité neuronale locale au niveau de la zone d'interaction avec d'autres éléments neuronaux. 4. La densité des varicosités en passant des fibres dopaminergiques a été significativement diminuée dans le mPFC de rats ayant subi une déplétion cholinergique dans le noyau accumbens, comparée aux témoins. Ces résultats supportent des interrelations entre la plasticité structurelle des varicosités dopaminergiques et le fonctionnement cortical. L’ensemble des donneès démontre une plasticité de la densité locale des varicosités axonales en fonction de l’activité neuronale locale. Cet enrichissement activité-dépendant contribue vraisemblablement au maintien d’une interaction neurochimique entre deux éléments neuronaux.
Resumo:
La transglutaminase microbienne (Microbial transglutaminase : MTG) est fortement exploitée dans l’industrie textile et alimentaire afin de modifier l’apparence et la texture de divers produits. Elle catalyse la formation de liaisons iso-peptidiques entre des protéines par l’entremise d’une réaction de transfert d’acyle entre le groupement γ-carboxamide d’une glutamine provenant d’un substrat donneur d’acyle, et le groupement ε-amino d’une lysine provenant d’un substrat accepteur d’acyle. La MTG est tolérante à un large éventail de conditions réactionnelles, ce qui rend propice le développement de cette enzyme en tant que biocatalyseur. Ayant pour but le développement de la MTG en tant qu’alternative plus soutenable à la synthèse d’amides, nous avons étudié la réactivité d’une gamme de substrats donneurs et accepteurs non-naturels. Des composés chimiquement diversifiés, de faible masse moléculaire, ont été testés en tant que substrats accepteurs alternatifs. Il fut démontré que la MTG accepte une large gamme de composés à cet effet. Nous avons démontré, pour la première fois, que des acides aminés non-ramifiés et courts, tels la glycine, peuvent servir de substrat accepteur. Les α-acides aminés estérifiés Thr, Ser, Cys et Trp, mais pas Ile, sont également réactifs. En étendant la recherche à des composés non-naturels, il fut observé qu’un cycle aromatique est bénéfique pour la réactivité, bien que les substituants réduisent l’activité. Fait notable, des amines de faible masse moléculaire, portant les groupements de forte densité électronique azidure ou alcyne, sont très réactives. La MTG catalyse donc efficacement la modification de peptides qui pourront ensuite être modifiés ou marqués par la chimie ‘click’. Ainsi, la MTG accepte une variété de substrats accepteurs naturels et non-naturels, élargissant la portée de modification des peptides contenant la glutamine. Afin de sonder le potentiel biocatalytique de la MTG par rapport aux substrats donneurs, des analogues plus petits du peptide modèle Z-Gln-Gly furent testés; aucun n’a réagi. Nous avons toutefois démontré, pour la première fois, la faible réactivité d’esters en tant que substrats donneurs de la MTG. L’éventuelle amélioration de cette réactivité permettrait de faire de la MTG un biocatalyseur plus général pour la synthèse d’amides. Mots clés: Lien amide, biocatalyse, biotransformation, transglutaminase, arrimage moléculaire, criblage de substrats, ingénierie de substrats.
Resumo:
ZnGa2O4:Dy3+ phosphor thin films were deposited on quartz substrates by radio frequency rf magnetron sputtering and the effect of substrate temperature on its structural and luminescent properties was investigated. Polycrystalline film could be deposited even at room temperature. The crystalline behavior, Zn/Ga ratio, and surface morphology of the films were found to be highly sensitive to substrate temperature. Under UV illumination, the as-deposited films at and above 300°C gave white luminescence even without any postdeposition treatments. The photoluminescent PL emission can be attributed to the combined effect of multicolor emissions from the single luminescence center Dy3+ via host-sensitization. Maximum PL emission intensity was observed for the film deposited at 600°C, and the CIE chromaticity coordinates of the emission were determined to be x,y = 0.34, 0.31 .