973 resultados para proton pump inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases [aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline] have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)-], (1), [(C6H8NO)+(C7H3N2O7)-], (2), [(C7H10NO)+(C7H3N2O7)-], (3), [(C7H10NO)+(C7H3N2O7)-], (4), [(C6H7FN)+(C7H3N2O7)-], (5), [(C6H7ClN)+(C7H3N2O7)-], (6), and [(C6H9N2)+(C7H3N2O7)-], (7) respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)o, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)o, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10), β = 95.255(19)o, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)o, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)o, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)o, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)o, Z = 4. In all compounds at least one primary linear intermolecular N+-H…O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases [compounds 1 and 4], are weak cation-anion or cation-cation π-π interactions found while weak aromatic C-H…O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NICE guidelines have stated that patients undergoing elective hip surgery are at increased risk for venous thromboembolic events (VTE) following surgery and have recommended thromboprophylaxis for 28-35 days1, 2. However the studies looking at the new direct thrombin inhibitors have only looked at major bleeding. We prospectively looked at wound discharge in patients who underwent hip arthroplasty and were given dabigatran postoperatively between March 2010 and April 2010 (n=56). We retrospectively compared these results to a matched group of patients who underwent similar operations six months earlier when all patients were given dalteparin routinely postoperatively until discharge, and discharged home on 150mg aspirin daily for 6 weeks (n=67). Wound discharge after 5 days was significantly higher in the patients taking dabigatran (32% dabigatran n=18, 10% dalteparin n=17, p=0.003) and our rate of delayed discharges due to wound discharge significantly increased from 7% in the dalteparin group (n=5) to 27% for dabigatran (n=15, p=0.004). Patients who received dabigatran were more than five times as likely to return to theatre with a wound complication as those who received dalteparin (7% dabigatran n=4, vs. 1% dalteparin n=1), however, this was not statistically significant (p=0.18). The significantly higher wound discharge and return to theatre rates demonstrated in this study have meant that we have changed our practice to administering dalteparin until the wound is dry and then starting dabigatran. Our study demonstrates the need for further clinical studies regarding wound discharge and dabigatran.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (PCD) and progenitor cell generation (of glial and in some brain areas also neuronal fate) in the CNS is an active process throughout life and is generally not associated with gliosis which means that PCD can be pathologically silent. The striking discovery that progenitor cell generation (of glial and in some brain areas neuronal fate) is widespread in the adult CNS (especially the hippocampus) suggest a much more dynamic scenario than previously thought and transcends the dichotomy between neurodevelopmental and neurodegenerative models of schizophrenia and related disorders. We suggest that the regulatory processes that control the regulation of PCD and the generation of progenitor cells may be disturbed in the early phase of psychotic disorders underpinning a disconnectivity syndrom at the onset of clinically overt disorders. An ongoing 1H-MRS study of the anterior hippocampus at 3 Tesla in mostly drug-naive first-episode psychosis patients suggests no change in NAA, but significant increases in myo-inositol and lactate. The data suggests that neuronal integrity in the anterior hippocampus is still intact at the early stage of illness or mainly only functionally impaired. However the increase in lactate and myo-inositol may reflect a potential disturbance of generation and PCD of progenitor cells (of glial and in selected brain areas also neuronal fate) at the onset of psychosis. If true the use of neuroprotective agents such as lithium or eicosapentaenoic acid (which inhibit PCD and support cell generation)in the early phase of psychotic disorders may be a potent treatment avenue to explore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.