410 resultados para proteasome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that SLPI can inhibit lipopolysaccharide-induced NF-kappaB activation in monocytes by preventing degradation of the key regulatory protein IkappaBalpha which is inefficiently degraded by the ubiquitin-proteasome pathway due to a direct effect of SLPI on the activity of this pathway. I designed this project and carried out all of the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human Papilloma virus E6-associated protein (E6-AP), which is known as an E3 ubiquitin ligase, mediates ubiquitination and subsequent degradation of a series of cellular proteins. In this paper, we identify here trihydrophobin 1 (TH1), an integral subunit of the human negative transcription elongation factor (NELF) complex, as a novel E6-AP interaction protein and a target of E6-AP-mediated degradation. Overexpression of E6-AP results in degradation of TH1 in a dose-dependent manner, whereas knock-down of endogenous E6-AP elevates the TH1 protein level. TH1 protein turnover is substantially faster, compared to controls, in cells that overexpressed E6-AP. Wild-type E6-AP promotes the ubiquitination of TH1, while a catalytically inactive point mutant of E6-AP abolishes its ubiquitination. Furthermore, in vitro ubiquitination assay also demonstrates that TH1 can be ubiquitinated by E6-AP. The degradation is blocked by treatment with proteasome inhibitor MG132. Herein, we provide strong evidence that TH1 is a specific substrate that is targeted for degradation through E6-AP-catalyzed polyubiquitination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unregulated apoptosis can be due to a disruption in the balance and control of both intra- and inter-cellular proteolytic activities leading to various disease states. Many proteases involved in apoptotic processes are yet to be identified; however, several are already well characterized. Caspases traditionally held the predominant role as prime mediators of execution. However, latterly, evidence has accumulated that non-caspases, including calpains, cathepsins, granzymes and the proteasome have roles in mediating and promoting cell death. Increasingly, research is implicating serine proteases within apoptotic processing, particularly in the generation of nuclear events such as condensation, fragmentation and DNA degradation observed in late-stage apoptosis. Serine proteases therefore are emerging as providing additional or alternative therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB) Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells with insulin-like growth factor-1 increased Mdm2 phosphorylation on Ser(166) and Ser(188) in a phosphatidylinositide 3'-OH kinase-dependent manner, and the treatment of both human embryonic kidney 293 and COS-1 cells with phosphatidylinositide 3'-OH kinase inhibitor LY-294002 led to proteasome-mediated Mdm2 degradation. Introduction of a constitutively active form of PKB together with Mdm2 into cells induced phosphorylation of Mdm2 at Ser(166) and Ser(188) and stabilized Mdm2 protein. Moreover, mouse embryonic fibroblasts lacking PKBalpha displayed reduced Mdm2 protein levels with a concomitant increase of p53 and p21(Cip1), resulting in strongly elevated apoptosis after UV irradiation. In addition, activation of PKB correlated with Mdm2 phosphorylation and stability in a variety of human tumor cells. These findings suggest that PKB plays a critical role in controlling of the Mdm2.p53 signaling pathway by regulating Mdm2 stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is treated effectively with tyrosine kinase inhibitors (TKIs); however, 2 key problems remain-the insensitivity of CML stem and progenitor cells to TKIs and the emergence of TKI-resistant BCR-ABL mutations. BCR-ABL activity is associated with increased proteasome activity and proteasome inhibitors (PIs) are cytotoxic against CML cell lines. We demonstrate that bortezomib is antiproliferative and induces apoptosis in chronic phase (CP) CD34(+) CML cells at clinically achievable concentrations. We also show that bortezomib targets primitive CML cells, with effects on CD34(+)38(-), long-term culture-initiating (LTC-IC) and nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells. Bortezomib is not selective for CML cells and induces apoptosis in normal CD34(+)38(-) cells. The effects against CML cells are seen when bortezomib is used alone and in combination with dasatinib. Bortezomib causes proteasome but not BCR-ABL inhibition and is also effective in inhibiting proteasome activity and inducing apoptosis in cell lines expressing BCR-ABL mutations, including T315I. By targeting both TKI-insensitive stem and progenitor cells and TKI-resistant BCR-ABL mutations, we believe that bortezomib offers a potential therapeutic option in CML. Because of known toxicities, including myelosuppression, the likely initial clinical application of bortezomib in CML would be in resistant and advanced disease. (Blood. 2010;115:2241-2250)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background BRCA1 and cyclin D1 are both essential for normal breast development and mutation or aberration of their expression is associated with breast cancer [1,2]. Cyclin D1 is best known as a G1 cyclin where it regulates the G1 to S phase transition by acting as a rate-limiting subunit of CDK4/6 kinase activity. More recently, however, Stacey has demonstrated that cyclin D1 levels in G2/M determine whether a cell continues to proliferate or exits the cell cycle [3]. The majority of BRCA1 in the cell is bound to BARD1 through their N-terminal RING domains. Heterodimerization is essential for the stability and correct localization of the complex and confers ubiquitin ligase activity to BRCA1. The importance of the ligase activity of BRCA1 to breast cancer development is inferred from the fact that N-terminal diseaseassociated mutations are proposed to reduce ligase activity [4]. Methods Protein–protein interactions were demonstrated using yeast-two-hybrid and coimmunoprecipitation. Protein levels were altered through overexpression, siRNA and antisense technology. The effect of proteasome inhibitors and cycloheximide treatment was also examined. Results We initially identified cyclin D1 as a binding partner of BARD1 in a yeast-two-hybrid screen and defined the minimal binding region as the N-terminus of BARD1. This interaction was confirmed in vivo by coimmunoprecipitation. The N-terminus of BARD1 also binds BRCA1 and imparts ubiquitin ligase activity to the complex. Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Traditionally polyubiquitin chains linked through lysine 48 target proteins for degradation by the 26 S proteasome. We have demonstrated that cyclin D1 protein levels are inversely related to BRCA1 and BARD1 levels in several model systems. Furthermore, regulation of cyclin D1 levels occurs through a post-transcriptional mechanism and requires the ligase activity of BRCA1. Interestingly, this phenomenon is cell-cycle regulated, occurring in G2/M. Conclusion We propose that cyclin D1 is a potential substrate for BRCA1 ubiquitination and that this targets cyclin D1 for proteasomal-mediated degradation. Future work will focus on ascertaining the functional consequence of cyclin D1 regulation by the BRCA1–BARD1 complex; in particular, the impact of BRCA1, mediated through regulation of cyclin D1, on the proliferation versus differentiation decision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptionally erythropoietin (Epo) synthesis is tightly regulated by the hypoxia inducible factor (HIF), which is composed of one alpha and one beta subunit that are constitutively expressed. The beta subunit is non-variable, but three different alpha subunits give rise to three isoforms of HIF. The alpha subunit is proteasomally regulated in the presence of oxygen by hydroxylation of the proline in the LXXLAP motif of the oxygen dependent degradation (ODD) domain of HIFalpha, catalysed by members of the prolyl hydroxylase domain (PHD) family of enzymes. This allows the von Hippel Lindau (VHL) protein to associate with the alpha subunit, which is subsequently tagged with ubiquitin and degraded by the proteasome. Any defect in the oxygen sensing pathway that allows the alpha subunit to escape proteasomal regulation leads to elevated expression of HIF target genes.

Recently mutations in both VHL and PHD2 have been identified in a cohort of patients with erythrocytosis, but no mutations were found in the ODD domain of HIF1alpha. Instead, investigation of the homologous region in HIF-2alpha revealed four different mutations, Pro534Leu, Met535Val, Gly537Arg and Gly537Trp in seven individuals/families. Affected individuals presented at a young age with elevated serum Epo. Several individuals have a clinical history of thrombosis, but no evidence of a von Hippel Lindau-like syndrome.

To define how the four mutations relate to the erythrocytosis phenotype functional assays were performed in vitro. Binding of PHD2 to the four HIF-2alpha mutants was impaired to varying degrees, with both the Gly537 mutants showing the greatest reduction. The association of VHL with the hydroxylated Met535Val mutant peptide was similar to wild type HIF- 2alpha, but was decreased in the other three HIF-2alpha mutants. Expression of three HIF- 2alpha target genes, adrenomedullin, NDRG1 and VEGF, was significantly up-regulated in cells stably transfected with the mutants under normoxia compared to wild type HIF-2alpha. Mutations in the ODD domain of HIF-2alpha disrupt proteasomal regulation by reducing the association with PHD2 and hence hydroxylation. Furthermore the binding of VHL is also impaired, even when HIF-2alpha is hydroxylated. Examination of the three-dimensional structure of hydroxylated HIF-1alpha bound to VHL confirms that amino acids close to site of hydroxylation (Pro-531 in isoform 2) are important for this association. These observations, together with recent studies utilising murine models of erythrocytosis, support the PHD2-HIF-2alpha-VHL axis as the major regulator of erythropoietin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FLIP is a potential anti-cancer therapeutic target that inhibits apoptosis by blocking caspase 8 activation by death receptors. We report a novel interaction between FLIP and the DNA repair protein Ku70 that regulates FLIP protein stability by inhibiting its polyubiquitination. Furthermore, we found that the histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) enhances the acetylation of Ku70, thereby disrupting the FLIP/Ku70 complex and triggering FLIP polyubiquitination and degradation by the proteasome. Using in vitro and in vivo colorectal cancer models, we further demonstrated that SAHA-induced apoptosis is dependant on FLIP downregulation and caspase 8 activation. In addition, an HDAC6-speci?c inhibitor Tubacin recapitulated the effects of SAHA, suggesting that HDAC6 is a key regulator of Ku70 acetylation and FLIP protein stability. Thus, HDAC inhibitors with anti-HDAC6 activity act as ef?cient post-transcriptional suppressors of FLIP expression and may, therefore, effectively act as ‘FLIP inhibitors’ © 2012 Macmillan Publishers Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERa-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERa-dependent transactivation by reducing the stability of ERa. Consistent with its ability to regulate the levels of ERa, expression of RUNX3 inversely correlates with the expression of ERa in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERa, RUNX3 acts as a novel tumor suppressor in breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization.

RESULTS: Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells.

CONCLUSIONS: Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis.

Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.

Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05).

Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics. (C) 2015 Published by Elsevier Inc. on behalf of The Alzheimer's Association.