994 resultados para problem complexity
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.
Resumo:
An m-cycle system of order upsilon is a partition of the edge-set of a complete graph of order upsilon into m-cycles. The mu -way intersection problem for m-cycle systems involves taking mu systems, based on the same vertex set, and determining the possible number of cycles which can be common to all mu systems. General results for arbitrary m are obtained, and detailed intersection values for (mu, m) = (3, 4), (4, 5),(4, 6), (4, 7), (8, 8), (8, 9). (For the case (mu, m)= (2, m), see Billington (J. Combin. Des. 1 (1993) 435); for the case (Cc,m)=(3,3), see Milici and Quattrochi (Ars Combin. A 24 (1987) 175. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The number of 1-factors (near 1-factors) that mu 1-factorizations (near 1-factorizations) of the complete graph K-v, v even (v odd), can have in common, is studied. The problem is completely settled for mu = 2 and mu = 3.
Resumo:
For all in greater than or equal to 3, the Oberwolfach problem is solved for the case where the 2-factors consist of two cycles of lengths in and m + 1, and for the case where the 2-factors consist of two cycles of lengths m and m + 2.