862 resultados para primary science.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Science picture books offer pleasurable and educational reading experiences. These texts open up opportunities for cross-curriculum teaching and learning and a means for developing students’ visual literacy skills, aesthetic appreciation, and higher level thinking skills. Picture books demonstrate how one mode or semiotic system (visual and verbal) mediates the other, often complementing, extending, and filling-in the gaps between words and images. Students’ meaning making is further extended when they can understand the subtleties and effects (and affects) of the visual elements of art and design, and the different styles of writing and language use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article outlines the findings of a research project in which primary school students in Queensland, Australia undertook science learning through media arts pedagogy. The project was a component of the URLearning Project. We found that students' development of digital media literacies allowed participation and communication in science in ways that were otherwise unavailable to them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STEM education is a new frontier in Australia, particularly for primary schools. However, the E in STEM needs to have a stronger focus with science and mathematics concepts aligned to the presiding curricula. In addition, pedagogical knowledge practices such as planning, preparation, teaching strategies, assessment and so forth need to be connected to key concepts for developing a STEM education. One of the aims of this study was to understand how a pedagogical knowledge practice framework could be linked to student outcomes in STEM education. Specifically, this qualitative research investigated Year 4 students’ involvement in an integrated STEM education program that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (such as 3D shapes and metric measurements: millilitres, temperature, grams, centimetres) for designing, making and testing a strong and safe medical kit to insulate medicines at desirable temperatures. Eleven pedagogical knowledge practices (e.g., planning, preparation, teaching strategies, classroom management, and assessment) were used as a framework for understanding how teaching may be linked to student outcomes in STEM education. For instance, “planning” involved devising a student booklet as a resource for students to understand the tasks required of them, which also provided space for them to record ideas, results and information. Planning involved linking national and state curriculum documents to the STEM education activities. More studies are required around pedagogical knowledge frameworks to understand what students learn when involved in STEM education, particularly with the inclusion of engineering education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the extent to which the accuracy of magnetic resonance imaging (MRI) based virtual 3-dimensional (3D) models of the intact orbit can approach that of the gold standard, computed tomography (CT) based models. The goal was to determine whether MRI is a viable alternative to CT scans in patients with isolated orbital fractures and penetrating eye injuries, pediatric patients, and patients requiring multiple scans in whom radiation exposure is ideally limited. Materials and Methods: Patients who presented with unilateral orbital fractures to the Royal Brisbane and Women’s Hospital from March 2011 to March 2012 were recruited to participate in this cross-sectional study. The primary predictor variable was the imaging technique (MRI vs CT). The outcome measurements were orbital volume (primary outcome) and geometric intraorbital surface deviations (secondary outcome)between the MRI- and CT-based 3D models. Results: Eleven subjects (9 male) were enrolled. The patients’ mean age was 30 years. On average, the MRI models underestimated the orbital volume of the CT models by 0.50 0.19 cm3 . The average intraorbital surface deviation between the MRI and CT models was 0.34 0.32 mm, with 78 2.7% of the surface within a tolerance of 0.5 mm. Conclusions: The volumetric differences of the MRI models are comparable to reported results from CT models. The intraorbital MRI surface deviations are smaller than the accepted tolerance for orbital surgical reconstructions. Therefore, the authors believe that MRI is an accurate radiation-free alternative to CT for the primary imaging and 3D reconstruction of the bony orbit. �

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world and its peoples are facing multiple, complex challenges and we cannot continue as we are (Moss, 2010). Earth‘s “natural capital” - nature‘s ability to provide essential ecosystem services to stabilize world climate systems, maintain water quality, support secure food production, supply energy needs, moderate environmental impacts, and ensure social harmony and equity – is seriously compromised (Gough, 2005; Hawkins, Lovins & Lovins, 1999). To further summarize, current rates of resource consumption by the global human population are unsustainable (Kitzes, Peller, Goldfinger & Wackernagel, 2007) for human and non-human species, and for future generations. Further, continuing growth in world population and global political commitment to growth economics compounds these demands. Despite growing recognition of the serious consequences for people and planet, little consideration is given, within most nations, to the social and environmental issues that economic growth brings. For example, Australia is recognised as one of the developed countries most vulnerable to the impacts of climate change. Yet, to date, responses (such as carbon pricing) have been small-scale, fragmented, and their worth disputed, even ridiculed. This is at a time referred to as ‘the critical decade’ (Hughes & McMichael, 2011) when the world’s peoples must make strong choices if we are to avert the worst impacts of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (e.g., 3D shapes and metric measurements) for designing, making and testing a strong and safe medical kit to insulate medicines (ice cubes) at desirable temperatures. Data collection tools included student work samples, photographs, written responses from students and the teacher, and researcher notes. In a post-hoc analysis, a pedagogical knowledge practice framework (i.e., planning, timetabling, preparation, teaching strategies, content knowledge, problem solving, classroom management, questioning, implementation, assessment, and viewpoints) was used to explain links to student outcomes in STEM education. The study showed how pedagogical knowledge practices may be linked to student outcomes (knowledge, understanding, skill development, and values and attitudes) for a STEM education activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research investigated the visual demands in modern primary school classrooms and also the impact of common refractive anomalies on a child's ability to perform academic-related tasks. The results showed that relatively high levels of visual acuity, contrast demand and sustained accommodative-convergence are required to perform optimally in the modern classroom environment. It was also demonstrated that relatively low magnitudes of uncorrected refractive error may have a detrimental impact on children's ability to perform academic-related activities at school, with sustained near work further exacerbating this effect. These findings have important implications for both eye care practitioners and education authorities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha-1·yr-1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.