974 resultados para pressure sensor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We share our experience in planning, designing and deploying a wireless sensor network of one square kilometre area. Environmental data such as soil moisture, temperature, barometric pressure, and relative humidity are collected in this area situated in the semi-arid region of Karnataka, India. It is a hope that information derived from this data will benefit the marginal farmer towards improving his farming practices. Soon after establishing the need for such a project, we begin by showing the big picture of such a data gathering network, the software architecture we have used, the range measurements needed for determining the sensor density, and the packaging issues that seem to play a crucial role in field deployments. Our field deployment experiences include designing with intermittent grid power, enhancing software tools to aid quicker and effective deployment, and flash memory corruption. The first results on data gathering look encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solid-state sensor for SOx (x = 2, 3) species has been designed using ?-alumina as the solid electrolyte and Na2SO4 as the auxiliary electrode. The measured e.m.f. of the cell Pt, O?2 + SO?2 + SO?3|Na2SO4short parallel?-aluminashort parallelNa2SO4|SO?3 + SO?2 + O?2, PT in the temperature range 700 K to 1150 K agrees well with values calculated using the Nernst equation. The sodium sulphate acts both as a protective covering, preventing direct access of the gaseous SOx species to the ?-alumina electrolyte, and as an auxiliary electrode, converting chemical potentials of SOx species and O2 into an equivalent sodium potential. The open-circuit e.m.f. varies non-linearly with temperature for fixed composition of inlet gas mixtures containing SO2, O2 and Ar. The response time (t0.99) of the cell varies between 1.9 ks at 750 K and 0.06 ks at 1100 K. The e.m.f. response is faster when the partial pressure of SOx at the electrode is increased than when it is decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many process-control systems are air-operated. In such an environment, it would be desirable and economical to use pneumatic sensors. Bubble-back pressure sensors perform quite satisfactorily, but in case of viscous inflammable and slurry-like liquids with a tendency to froth, this level sensor is inadequate. The method suggested in this paper utilizes a pneumatic capacitor, one boundary of which is formed by the liquid level, to modulate a fluid amplifier feedback oscillator. The absence of moving parts and economy obtained makes this method attractive for process-control applications. The system has been mathematically modeled and simulated on an IBM 360/44 digital computer. Experimental values compare fairly well with the theoretical results. For the range tested, the sensor is found to have a linear frequency variation with the liquid level Extended running in the laboratory shows that the system is very reliable. This system has been found insensitive to temperature variations of up to 15ðC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EMF measurements were made with an electrochemical cell of the type ~t/&(s)/&+-beta alumina/Ag~S(s)S. 2(g). S(s or 1)/R at temperatures between 95 and 241°C. Sflver $- alumina was prepared with the ion exchange technique. The patial pressure of diatomic gas obtained from cell voltages agreed with the literature data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterized not just by high Mach numbers, but also high flow total enthalpies-often accompanied by dissociation and ionization of flowing gas itself-the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times-typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 mu s, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg(-1)) and 8.67 (total enthalpy 1.6 MJ kg(-1)), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on "Wave Sensor Technologies" in St. Petersburg, Florida on March 7-9, 2007, hosted by the University of South Florida (USF) College of Marine Science, an ACT partner institution. The primary objectives of this workshop were to: 1) define the present state of wave measurement technologies, 2) identify the major impediments to their advancement, and 3) make strategic recommendations for future development and on the necessary steps to integrate wave measurement sensors into operational coastal ocean observing systems. The participants were from various sectors, including research scientists, technology developers and industry providers, and technology users, such as operational coastal managers and coastal decision makers. Waves consistently are ranked as a critical variable for numerous coastal issues, from maritime transportation to beach erosion to habitat restoration. For the purposes of this workshop, the participants focused on measuring "wind waves" (i.e., waves on the water surface, generated by the wind, restored by gravity and existing between approximately 3 and 30-second periods), although it was recognized that a wide range of both forced and free waves exist on and in the oceans. Also, whereas the workshop put emphasis on the nearshore coastal component of wave measurements, the participants also stressed the importance of open ocean surface waves measurement. Wave sensor technologies that are presently available for both environments include bottom-mounted pressure gauges, surface following buoys, wave staffs, acoustic Doppler current profilers, and shore-based remote sensing radar instruments. One of the recurring themes of workshop discussions was the dichotomous nature of wave data users. The two separate groups, open ocean wave data users and the nearshore/coastal wave data users, have different requirements. Generally, the user requirements increase both in spatial/temporal resolution and precision as one moves closer to shore. Most ocean going mariners are adequately satisfied with measurements of wave period and height and a wave general direction. However, most coastal and nearshore users require at least the first five Fourier parameters ("First 5"): wave energy and the first four directional Fourier coefficients. Furthermore, wave research scientists would like sensors capable of providing measurements beyond the first four Fourier coefficients. It was debated whether or not high precision wave observations in one location can take the place of a less precise measurement at a different location. This could be accomplished by advancing wave models and using wave models to extend data to nearby areas. However, the consensus was that models are no substitution for in situ wave data.[PDF contains 26 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The co-organized Alliance for Coastal Technologies (ACT) and National Data Buoy Center (NDBC) Workshop "Meteorological Buoy Sensors Workshop" convened in Solomons, Maryland, April 19 to 21,2006, sponsored by the University of Maryland Center for Environmental Science (UMCES) Chesapeake Bay Laboratory (CBL), an ACT partner institution. Participants from various sectors including resource managers and industry representatives collaborated to focus on technologies and sensors that measure the near surface variables of wind speed and direction, barometric pressure, humidity and air temperature. The vendor list was accordingly targeted at companies that produced these types of sensors. The managers represented a cross section of federal, regional and academic marine observing interests from around the country. Workshop discussions focused on the challenges associated with making marine meteorological observations in general and problems that were specific to a particular variable. Discussions also explored methods to mitigate these challenges through the adoption of best practices, improved technologies and increased standardization. Some of the key workshop outcomes and recommendations included: 0cean.US should establish a committee devoted to observations. The committee would have a key role in developing observing standards. The community should adopt the target cost, reliability and performance standards drafted for a typical meteorological package to be used by a regional observing system. A forum should be established to allow users and manufacturers to share best practices for the employment of marine meteorological sensors. The ACT website would host the forum. Federal activities that evaluate meteorological sensors should make their results publicly available. ACT should extend their evaluation process to include meteorological sensors. A follow on workshop should be conducted that covers the observing of meteorological variables not addressed by this workshop. (pdf contains 18 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho teve como objetivo geral avaliar o potencial das imagens do sensor ASTER, utilizando a região do infravermelho de ondas curtas (SWIR), para discriminação espectral de rochas carbonáticas aflorantes na região Noroeste do Estado do Rio de Janeiro, complementando produtos existentes de mapeamento geológico. As rochas carbonáticas servem de matéria-prima para produção de cimento, que atualmente apresenta forte demanda dado o crescimento de obras civis devido à expansão da infraestrutura do Estado do Rio de Janeiro. Este crescimento no consumo oferece desafios às companhias produtoras, tornando-se de vital importância a identificação de novas áreas para exploração de insumos para a indústria civil. Neste sentido, o carbonato tem sofrido grande pressão com relação a sua produção pois é a principal matéria-prima utilizada na fabricação do cimento. Imagens do sensor Aster vem sendo utilizadas na área da geologia com êxito, discriminando litologias e minerais como quartzo, óxido de ferro e calcita. Na região do intervalo de ondas entre 2,235-2,285 μm e 2,295-2,365 μm , as bandas 7 e 8 do sensor ASTER na região do SWIR, mostram-se adequadas para a identificação de minerais de calcita e dolomita. Como metodologia, foram aplicadas as técnicas de razões de bandas para separação de calcários e dolomitos e para a classificação espectral, foi utilizada a técnica SAM. Tornou-se como referência para a classificação espectral amostras de áreas de rochas carbonáticas aflorantes e espectros da biblioteca espectral da USGS. As classificações espectrais obtiveram resultados significativos na discriminação espectral das áreas carbonáticas, no entanto as técnicas de razões de bandas não obtiveram resultados suficientes para a discriminação de calcários e dolomitos. Para trabalhos futuros sugere-se a realização de trabalho de campo para a coleta de espectros, através da espectrorradiometria dos afloramentos dos carbonatos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-body sensor systems for sport are challenging since the sensors must be lightweight and small to avoid discomfort, and yet robust and highly accurate to withstand and capture the fast movements associated with sport. In this work, we detail our experience of building such an on-body system for track athletes. The paper describes the design, implementation and deployment of an on-body sensor system for sprint training sessions. We autonomously profile sprints to derive quantitative metrics to improve training sessions. Inexpensive Force Sensitive Resistors (FSRs) are used to capture foot events that are subsequently analysed and presented back to the coach. We show how to identify periods of sprinting from the FSR data and how to compute metrics such as ground contact time. We evaluate our system using force plates and show that millisecond-level accuracy is achievable when estimating contact times. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the intelligence and the functionality of microrobots increase, there is a growing need to incorporate sensors into these robots. In order to limit the outer dimensions of these microsystems, this research investigates sensors that can be integrated efficiently into microactuators. Here, a pneumatic piston-cylinder microactuator with an integrated inductive position sensor was developed. The main advantage of pneumatic actuators is their high force and power density at microscale. The outside diameter of the actuator is 1.3 mm and the length is 15 mm. The stroke of the actuator is 12 mm, and the actuation force is 1 N at a supply pressure of 1.5 MPa. The position sensor consists of two coils wound around the cylinder of the actuator. The measurement principle is based on the change in coupling factor between the coils as the piston moves in the actuator. The sensor is extremely small since one layer of 25 μm copper wire is sufficient to achieve an accuracy of 10 μm over the total stroke. Position tests with a PI controller and a sliding mode controller showed that the actuator is able to position with an accuracy up to 30 μm. Such positioning systems offer great opportunities for all devices that need to control a large number of degrees of freedom in a restricted volume. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The attainable steady-state limiting currents and time responses of membrane-covered and membrane-independent gas sensors incorporating different electrode and electrolyte materials have been compared. A new design comprising a membrane-free microelectrode modified with a thin layer of a room temperature ionic liquid is considered. While the use of ionic liquid as electrolyte eliminates the need for a membrane and added supporting electrolyte, the slower diffusion of analyte within the more viscous medium results in slower time responses. Such sensors do, however, have potential application in more extreme operating conditions, such as high temperature and pressure, where traditional solvents would volatise.