871 resultados para predictive maintenance
Resumo:
Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.
Resumo:
This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.
Resumo:
Abstract Background The quantum increases in home Internet access and available online health information with limited control over information quality highlight the necessity of exploring decision making processes in accessing and using online information, specifically in relation to children who do not make their health decisions. Objectives To understand the processes explaining parents’ decisions to use online health information for child health care. Methods Parents (N = 391) completed an initial questionnaire assessing the theory of planned behaviour constructs of attitude, subjective norm, and perceived behavioural control, as well as perceived risk, group norm, and additional demographic factors. Two months later, 187 parents completed a follow-up questionnaire assessing their decisions to use online information for their child’s health care, specifically to 1) diagnose and/or treat their child’s suspected medical condition/illness and 2) increase understanding about a diagnosis or treatment recommended by a health professional. Results Hierarchical multiple regression showed that, for both behaviours, attitude, subjective norm, perceived behavioural control, (less) perceived risk, group norm, and (non) medical background were the significant predictors of intention. For parents’ use of online child health information, for both behaviours, intention was the sole significant predictor of behaviour. The findings explain 77% of the variance in parents’ intention to treat/diagnose a child health problem and 74% of the variance in their intentions to increase their understanding about child health concerns. Conclusions Understanding parents’ socio-cognitive processes that guide their use of online information for child health care is important given the increase in Internet usage and the sometimes-questionable quality of health information provided online. Findings highlight parents’ thirst for information; there is an urgent need for health professionals to provide parents with evidence-based child health websites in addition to general population education on how to evaluate the quality of online health information.
Resumo:
Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.
Resumo:
Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
This paper presents a reliability assessment of a substation, part of the Queensland transmission network in Australia. As part of a maintenance considerations, this study utilises the substation reliability assessment package STAREL to quantitatively compare the reliability improvement achieved by two circuit breaker reinforcement alternatives for Swanbank circuit breaker replacement or refurbishment. Substation reliability is interpreted on the basis of outage frequency and outage duration indices for each individual transmission line terminated in Swanbank 'B' substation. By considering the reliability indices in this paper with the cost associated conducted by POWERLINK Queensland, a Swanbank 'B' reinforcement alternative can be selected that optimises both transmission line security and the costs incurred in achieving it.
Resumo:
Reliable communications is one of the major concerns in wireless sensor networks (WSNs). Multipath routing is an effective way to improve communication reliability in WSNs. However, most of existing multipath routing protocols for sensor networks are reactive and require dynamic route discovery. If there are many sensor nodes from a source to a destination, the route discovery process will create a long end-to-end transmission delay, which causes difficulties in some time-critical applications. To overcome this difficulty, the efficient route update and maintenance processes are proposed in this paper. It aims to limit the amount of routing overhead with two-tier routing architecture and introduce the combination of piggyback and trigger update to replace the periodic update process, which is the main source of unnecessary routing overhead. Simulations are carried out to demonstrate the effectiveness of the proposed processes in improvement of total amount of routing overhead over existing popular routing protocols.
Resumo:
The current study examined the structure of the volunteer functions inventory within a sample of older individuals (N = 187). The career items were replaced with items examining the concept of continuity of work, a potentially more useful and relevant concept for this population. Factor analysis supported a four factor solution, with values, social and continuity emerging as single factors and enhancement and protective items loading together on a single factor. Understanding items did not load highly on any factor. The values and continuity functions were the only dimensions to emerge as predictors of intention to volunteer. This research has important implications for understanding the motivation of older adults to engage in contemporary volunteering settings.
Resumo:
Most existing research on maintenance optimisation for multi-component systems only considers the lifetime distribution of the components. When the condition-based maintenance (CBM) strategy is adopted for multi-component systems, the strategy structure becomes complex due to the large number of component states and their combinations. Consequently, some predetermined maintenance strategy structures are often assumed before the maintenance optimisation of a multi-component system in a CBM context. Developing these predetermined strategy structure needs expert experience and the optimality of these strategies is often not proofed. This paper proposed a maintenance optimisation method that does not require any predetermined strategy structure for a two-component series system. The proposed method is developed based on the semi-Markov decision process (SMDP). A simulation study shows that the proposed method can identify the optimal maintenance strategy adaptively for different maintenance costs and parameters of degradation processes. The optimal maintenance strategy structure is also investigated in the simulation study, which provides reference for further research in maintenance optimisation of multi-component systems.
Resumo:
Practitioners from both the upstream oil and gas industry and the space and satellite sector have repeatedly noted several striking similarities between the two industries over the years, which have in turn resulted in many direct comparisons in the media and industry press. The two sectors have previously worked together and shared ideas in ways that have yielded some important breakthroughs, but relatively little sharing or cross-pollination has occurred in the area of asset maintenance. This is somewhat surprising in light of the fact that here, too, the sectors have much in common. This paper accordingly puts forward the viewpoint that the upstream oil and gas industry could potentially make significant improvements in asset maintenance—specifically, with regard to offshore platforms and remote pipelines—by selectively applying some aspects of the maintenance strategies and philosophies that have been learned in the space and satellite sector. The paper then offers a research agenda toward accelerating the rate of learning and sharing between the two industries in this domain, and concludes with policy recommendations that could facilitate this kind of cross-industry learning.
Resumo:
Enterprise resource planning (ERP) software is a dominant approach for dealing with legacy information system problems. In order to avoid invalidating maintenance and development support from the ERP vendor, most organizations reengineer their business processes in line with those implicit within the software. Regardless, some customization is typically required. This paper presents two case studies of ERP projects where customizations have been performed. The case analysis suggests that while customizations can give true organizational benefits, careful consideration is required to determine whether a customization is viable given its potential impact upon future maintenance. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.
Resumo:
Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations.
Resumo:
Introduction This study reports on the application of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours (e.g., speeding, errors & aggressive manoeuvres) and predict crash involvement among a sample of general Queensland motorists. Material and Methods Surveys were completed by 249 general motorists on-line or via a pen-and-paper format. Results A factor analysis revealed a three factor solution for the DBQ which was consistent with previous Australian-based research. It accounted for 40.5% of the total variance, although some cross-loadings were observed on nine of the twenty items. The internal reliability of the DBQ was satisfactory. However, multivariate analysis using the DBQ revealed little predictive ability of the tool to predict crash involvement or demerit point loss e.g. violation notices. Rather, exposure to the road was found to be predictive of crashes, although speeding did make a small contribution to those who recently received a violation notice. Conclusions Taken together, the findings contribute to a growing body of research that raises questions about the predictive ability of the most widely used driving assessment tool globally. Ongoing research (which also includes official crash and offence outcomes) is required to better understand the actual contribution that the DBQ can make to understanding and improving road safety. Future research should also aim to confirm whether this lack of predictive efficacy originates from broader issues inherent within self-report data (e.g., memory recall problems) or issues underpinning the conceptualisation of the scale.