976 resultados para potential loss
Resumo:
The use of thermal shields to reduce radiation heat loss in Siemens-type CVD reactors is analyzed, both theoretically and experimentally. The potential savings from the use of the thermal shields is first explored using a radiation heat model that takes emissivity variations with wavelength into account, which is important for materials that do not behave as grey bodies. The theoretical calculations confirm that materials with lower surface emissivity lead to higher radiation savings. Assuming that radiation heat loss is responsible for around 50% of the total power consumption, a reduction of 32.9% and 15.5% is obtained if thermal shields with constant emissivities of 0.3 and 0.7 are considered, respectively. Experiments considering different thermal shields are conducted in a laboratory CVD reactor, confirming that the real materials do not behave as grey bodies, and proving that significant energy savings in the polysilicon deposition process are obtained. Using silicon as a thermal shield leads to energy savings of between 26.5-28.5%. For wavelength-dependent emissivities, the model shows that there are significant differences in radiation heat loss, of around 25%, when compared to that of constant emissivity. The results of the model highlight the importance of having reliable data on the emissivities within the relevant range of wavelengths, and at deposition temperatures, which remains a pending issue.
Resumo:
Telomeres play an important role in the immortalization of proliferating cells. The long tandem repeats of 5′-TTAGGG-3′ sequences in human telomeres are potential targets for the anticancer drug cisplatin, which forms mainly intrastrand d(GpG) and d(ApG) cross-links on DNA. The present study reveals that telomeres in cisplatin-treated HeLa cells are markedly shortened and degraded. A dose that killed 61% of the cells but allowed one round of cell division resulted in shortened telomeres before the induction of apoptosis. Higher doses of cisplatin halted cell cycle progression during the first S phase and triggered apoptosis followed by degradation of telomere repeats. A model in which both cell division with incomplete replication and induction of apoptosis by cisplatin could occur was devised to explain the drug-induced telomere loss.
Resumo:
The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.
Resumo:
The anti-atherogenic role of high density lipoprotein is well known even though the mechanism has not been established. In this study, we have used a novel model system to test whether removal of lipoprotein cholesterol from a localized depot will be affected by apolipoprotein A-I (apo A-I) deficiency. We compared the egress of cholesterol injected in the form of cationized low density lipoprotein into the rectus femoris muscle of apo A-I K-O and control mice. When the injected lipoprotein had been labeled with [3H]cholesterol, the t½ of labeled cholesterol loss from the muscle was about 4 days in controls and more than 7 days in apo A-I K-O mice. The loss of cholesterol mass had an initial slow (about 4 days) and a later more rapid component; after day 4, the disappearance curves for apo A-I K-O and controls began to diverge, and by day 7, the loss of injected cholesterol was significantly slower in apo A-I K-O than in controls. The injected lipoprotein cholesterol is about 70% in esterified form and undergoes hydrolysis, which by day 4 was similar in control and apo A-I K-O mice. The efflux potential of serum from control and apo A-I K-O mice was studied using media containing 2% native or delipidated serum. A significantly lower efflux of [3H]cholesterol from macrophages was found with native and delipidated serum from apo A-I K-O mice. In conclusion, these findings show that lack of apo A-I results in a delay in cholesterol loss from a localized depot in vivo and from macrophages in culture. These results provide support for the thesis that anti-atherogenicity of high density lipoprotein is related in part to its role in cholesterol removal.
Resumo:
The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose–response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes.
Resumo:
When tumors form in intestinal epithelia, it is important to know whether they involve single initiated somatic clones. Advanced carcinomas in humans and mice are known to be monoclonal. However, earlier stages of tumorigenesis may instead involve an interaction between cells that belong to separate somatic clones within the epithelium. The clonality of early tumors has been investigated in mice with an inherited predisposition to intestinal tumors. Analysis of Min (multiple intestinal neoplasia) mice chimeric for a ubiquitously expressed cell lineage marker revealed that normal intestinal crypts are monoclonal, but intestinal adenomas frequently have a polyclonal structure, presenting even when very small as single, focal adenomas composed of at least two somatic lineages. Furthermore, within these polyclonal adenomas, all tumor lineages frequently lose the wild-type Apc allele. These observations can be interpreted by several models for clonal interaction within the epithelium, ranging from passive fusion within regions of high neoplastic potential to a requirement for active clonal cooperation.
Resumo:
To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.
Resumo:
Carcinogen-DNA adduct measurements may become useful biomarkers of effective dose and/or early effect. However, validation of this biomarker is required at several levels to ensure that human exposure and response are accurately reflected. Important in this regard is an understanding of the relative biomarker levels in target and nontarget organs and the response of the biomarker under the chronic, low-dose conditions to which humans are exposed. We studied the differences between single and chronic topical application of benzo[a]pyrene (BAP) on the accumulation and removal of BAP-DNA adducts in skin, lung, and liver. Animals were treated with BAP at 10, 25, or 50 nMol topically once or twice per week for as long as 15 weeks. Animals were sacrificed either at 24, 48, or 72 hr after the last dose at 1 and 30 treatments, and after 24 hr for all other treatment groups. Adduct levels increased with increasing dose, but the slope of the dose-response was different in each organ. At low doses, accumulation was linear in skin and lung, but at high doses the adduct levels in the lung increased dramatically at the same time when the levels in the skin reached apparent steady state. In the liver adduct, levels were lower than in target tissues and apparent steady-state adduct levels were reached rapidly, the maxima being independent of dose, suggesting that activating metabolism was saturated in this organ. Removal of adducts from skin, the target organ, was more rapid following single treatment than with chronic exposure. This finding is consistent with earlier data, indicating that some areas of the genome are more resistant to repair. Thus, repeated exposure and repair cycles would be more likely to cause an increase in the proportion of carcinogen-DNA adducts in repair-resistant areas of the genome. These findings indicate that single-dose experiments may underestimate the potential for carcinogenicity for compounds that follow this pattern.
Resumo:
We report on a procedure for tissue preparation that combines thoroughly controlled physical and chemical treatments: quick-freezing and freeze-drying followed by fixation with OsO4 vapors and embedding by direct resin infiltration. Specimens of frog cutaneous pectoris muscle thus prepared were analyzed for total calcium using electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) approach. The preservation of the ultrastructure was excellent, with positive K/Na ratios revealed in the fibers by x-ray microanalysis. Clear, high-resolution EELS/ESI calcium signals were recorded from the lumen of terminal cisternae of the sarcoplasmic reticulum but not from longitudinal cisternae, as expected from previous studies carried out with different techniques. In many mitochondria, calcium was below detection whereas in others it was appreciable although at variable level. Within the motor nerve terminals, synaptic vesicles as well as some cisternae of the smooth endoplasmic reticulum yielded positive signals at variance with mitochondria, that were most often below detection. Taken as a whole, the present study reveals the potential of our experimental approach to map with high spatial resolution the total calcium within individual intracellular organelles identified by their established ultrastructure, but only where the element is present at high levels.
Resumo:
Female moths often become depleted of sex pheromone after mating as the various components of virgin behavior are switched off. In examining a potential male contribution to these events in the corn earworm moth Helicoverpa zea, we have characterized a basic polypeptide from the tissues producing (accessory glands) and storing (duplex) the seminal fluids. The peptide evokes the depletion of sex pheromone when injected into virgin females. This pheromonostatic peptide (PSP) is 57 amino acids long and contains a single disulfide bridge. It is blocked at the N terminus with pyroglutamate and at the C terminus by amidation. As little as 23 ng of peptide evokes the near-complete depletion of pheromone in decapitated (neck-ligated) females that had been injected with pheromone biosynthesis-activating neuropeptide. Activity is approximately 15-fold less in intact virgins, showing that the head limits the expression of activity in these injected females. Females mated to surgically impaired males, capable of producing a spermatophore but not transferring spermatozoa or seminal fluids, are depleted of pheromone by injected peptide. Females whose abdominal nerve cords have been severed are not depleted of pheromone after mating. Thus, neural signals either descending or ascending via the nerve cord are required for the depletion of pheromone after mating. PSP, from the seminal fluids, may participate in this process by direct or indirect action on the glandular tissue; if so, it represents an unusual mechanism in insects for the regulation by seminal fluids of postmating reproductive behavior.
Resumo:
Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.
Resumo:
Background: The immigrant population living in Spain grew exponentially in the early 2000s but has been particularly affected by the economic crisis. This study aims to analyse health inequalities between immigrants born in middle- or low-income countries and natives in Spain, in 2006 and 2012, taking into account gender, year of arrival and socioeconomic exposures. Methods: Study of trends using two cross-sections, the 2006 and 2012 editions of the Spanish National Health Survey, including residents in Spain aged 15–64 years (20 810 natives and 2950 immigrants in 2006, 14 291 natives and 2448 immigrants in 2012). Fair/poor self-rated health, poor mental health (GHQ-12 > 2), chronic activity limitation and use of psychotropic drugs were compared between natives and immigrants who arrived in Spain before 2006, adjusting robust Poisson regression models for age and socioeconomic variables to obtain prevalence ratios (PR) and 95% confidence interval (CI). Results: Inequalities in poor self-rated health between immigrants and natives tend to increase among women (age-adjusted PR2006 = 1.39; 95% CI: 1.24–1.56, PR2012 = 1.56; 95% CI: 1.33–1.82). Among men, there is a new onset of inequalities in poor mental health (PR2006 = 1.10; 95% CI: 0.86–1.40, PR2012 = 1.34; 95% CI: 1.06–1.69) and an equalization of the previously lower use of psychotropic drugs (PR2006 = 0.22; 95% CI: 0.11–0.43, PR2012 = 1.20; 95% CI: 0.73–2.01). Conclusions: Between 2006 and 2012, immigrants who arrived in Spain before 2006 appeared to worsen their health status when compared with natives. The loss of the healthy immigrant effect in the context of a worse impact of the economic crisis on immigrants appears as potential explanation. Employment, social protection and re-universalization of healthcare would prevent further deterioration of immigrants’ health status.
Resumo:
In recent decades wild boar have greatly increased in Europe due a combination of environmental and human factors. Because of a high reproduction rate, wild boar cause conflicts with human activities and in particularly agriculture. However, there are concerns also about environmental impact and in particular on ground nesting birds. Our study aim to evaluate the potential impact of wild boar on pheasants nests. Predation rates were compared between two areas with different wild boar abundance and between nests placed in fenced plots with no wild boar access (but accessible to other predators) and open plots in which the wild boar gains access. Predation rate by wild boar in the area with higher wild boar abundance was 61.5% whereas in the area with lower abundance was 16.0%. In plots with free access, wild boar predation was 34.2% whereas in exclusion plots we did not registered predation by wild boar. Moreover, wild boar resulted the main nest predator (total loss 22.8%). Our findings suggest that wild boar could have e strong impact on pheasant reproductive success.
Resumo:
This study examines the workings of the Common European Asylum System (CEAS), in order to assess the need and potential for new approaches to ensure access to protection for people seeking it in the EU, including joint processing and distribution of asylum seekers. Rather than advocating the addition of further complexity and coercion to the CEAS, the study proposes a focus on front-line reception and streamlined refugee status determination, in order to mitigate the asylum challenges facing Member States, and vindicate the rights of asylum seekers and refugees according to the EU acquis and international legal standards. Joint processing could contribute to front-line reception and processing capacity, but is no substitute for proper investment in national systems. The Dublin system as currently configured leads inexorably to increasing coercion and detention, and must thus be reconfigured to remove coercion as a principle and ensure consistency with human rights and other fundamental values of the EU.
Resumo:
Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.