971 resultados para potential flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To determine whether 80-lead body surface potential mapping (BSPM) improves detection of acute coronary artery occlusion in patients presenting with out-of-hospital cardiac arrest (OHCA) due to ventricular fibrillation (VF) and who survived to reach hospital. Methods and results: Of 645 consecutive patients with OHCA who were attended by the mobile coronary care unit, VF was the initial rhythm in 168 patients. Eighty patients survived initial resuscitation, 59 of these having had BSPM and 12-lead ECG post-return of spontaneous circulation (ROSC) and in 35 patients (age 69±13 yrs; 60% male) coronary angiography performed within 24. h post-ROSC. Of these, 26 (74%) patients had an acutely occluded coronary artery (TIMI flow grade [TFG] 0/1) at angiography. Twelve-lead ECG criteria showed ST-segment elevation (STE) myocardial infarction (STEMI) using Minnesota 9-2 criteria - sensitivity 19%, specificity 100%; ST-segment depression (STD) =0.05. mV in =2 contiguous leads - sensitivity 23%, specificity 89%; and, combination of STEMI or STD criteria - sensitivity 46%, specificity 100%. BSPM STE occurred in 23 (66%) patients. For the diagnosis of TFG 0/1 in a main coronary artery, BSPM STE had sensitivity 88% and specificity 100% (c-statistic 0.94), with STE occurring most commonly in either the posterior, right ventricular or high right anterior territories. Conclusion: Among OHCA patients presenting with VF and who survived resuscitation to reach hospital, post-resuscitation BSPM STE identifies acute coronary occlusion with sensitivity 88% and specificity 100% (c-statistic 0.94). © 2012 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow responsive passive samplers offer considerable potential in nutrient monitoring in catchments; bridging the gap between the intermittency of grab sampling and the high cost of automated monitoring systems. A commercially available passive sampler was evaluated in a number of river systems encapsulating a gradient in storm response, combinations of diffuse and point source pressures, and levels of phosphorus and nitrogen concentrations. Phosphorus and nitrogen are sequestered to a resin matrix in a permeable cartridge positioned in line with streamflow. A salt tracer dissolves in proportion to advective flow through the cartridge. Multiple deployments of different cartridge types were undertaken and the recovery of P and N compared with the flow-weighted mean concentration (FWMC) from high-resolution bank-side analysers at each site. Results from the passive samplers were variable and largely underestimated the FWMC derived from the bank-side analysers. Laboratory tests using ambient river samples indicated good replication of advective throughflow using pumped water, although this appeared not to be a good analogue of river conditions where flow divergence was possible. Laboratory tests also showed good nutrient retention but not elution and these issues appeared to combine to limit the utility in ambient river systems at the small catchment scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE(-/-) mice, which was related to the severity of lesion development. In vitro study using human umbilical vein endothelial cells (HUVECs) indicated that disturbed flow increased the activation of XBP1 expression and splicing. Overexpression of spliced XBP1 induced apoptosis of HUVECs and endothelial loss from blood vessels during ex vivo cultures because of caspase activation and down-regulation of VE-cadherin resulting from transcriptional suppression and matrix metalloproteinase-mediated degradation. Reconstitution of VE-cadherin by Ad-VEcad significantly increased Ad-XBP1s-infected HUVEC survival. Importantly, Ad-XBP1s gene transfer to the vessel wall of ApoE(-/-) mice resulted in development of atherosclerotic lesions after aorta isografting. These results indicate that XBP1 plays an important role in maintaining endothelial integrity and atherosclerosis development, which provides a potential therapeutic target to intervene in atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical,spectrographic, microbiological and hydrogeologic studies at the ORIFRC site indicate that groundwater transport in structured media may behave as a system of parallel flow tubes. These tubes are preferred flowpaths that enable contaminant transport parallel to bedding planes (strike) over distances of 1000s of meters. A significant flux of groundwater is focused within an interval defined by the interface between the competent bedrock and overlying highly-weathered saprolite, commonly referred to as the"transition zone." Characteristics of this transition zone are dense fractures and the relative absence of weathering products (e.g. clays)results in a significantly higher permeability compared to both the overlying clay-saprolite and underlying bedrock. Several stratabound low seismic velocity zones located below the transition zone were identified during geophysics studies and were also determined to be fractured high permeability preferred contaminant transport pathways during subsequent drilling activities. XANES analysis of precipitates collected from these deeper flow zones indicate 95% or more of the U deposited is U(VI). Linear combination fitting of the EXAFS data shows that precipitates are ~51±5% U(VI)-carbonate-like phase (e.g., liebigite) and ~49±5% U(VI) associated with an iron oxide phase; inclusion of a third component in the fit suggests that up to 15% of the U(VI) may be associated with a phosphate phase or OH- phase (e.g.,schoepite). Although precipitates with similar U(VI)-carbonate and/or phosphate associations were identified in the transition zone pathways,there were also U(VI) complexes adsorbed to mineral surfaces that would tend to be more readily mobilized. Groundwater in the different flow tubes has been determined to consist of different water quality types that vary with the solid phase encountered (e.g., clays, carbonates, clastics) as contaminants migrate along the flow paths. This lateral and vertical variability in geochemistry, particularly pH, has a significant impact on microbiological community composition and activity. Ribosomal RNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter(a diverse population of denitrifiers that are moderately acid tolerant) have a high relative abundance in the acidic source zone at the ORIFRC site.Watershed-scale analysis across different flow paths/tubes revealed strong negative correlation between pH and the absolute and relative abundance of Rhodanobacter. Recent studies also confirmed that the ORIFRC site hosts a diverse fungal community, with significant differences observed between acidic (pH <5) and circumneutral (>5) wells. The lack of nitrous oxide reduction capability in fungi, and the detection of denitrification potential in slurry microcosms suggest that fungi may have aheretofore under appreciated role in biogeochemical transformations, with implications forsite remediation and greenhouse gas emissions. Further research is needed to determine if these organisms can influence U(VI) mobility either directly through immobilization or indirectly through the depletion of nitrate.In conclusion, additional studies are required to quantify the processes (e.g., solid phase reactions, recharge, diffusion, microbial interactions) that are occurring along the groundwater flow tubes identified at the ORIFRC so predictive models can be parameterized and used to assess long-term contaminant fate and transport and remedial options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single-nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine-scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15-150 km in south-west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation-with-migration analysis indicated extensive local-scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long-term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long-term demographic stability through previous changes in the Earth's climate. (C) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 589597.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas extracted from hydraulically fractured shale formations potentially has a big impact on the global energy landscape. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct realizations of numerical modeling simulations to assess fluid flow and chloride transport from a synthetic Bowland Shale over a period of 11,000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. Chloride mass exchange between fractures and the rock matrix was fully accounted for in the model. The assessment was carried out to investigate fluid and chloride mass fluxes before, during, and after hydraulic fracturing of the Bowland Shale. Impacts of the upward fracture height and aperture, as well as hydraulic conductivity of the multilayered bedrock system, are also included this assessment. This modeling revealed that the hydraulically fractured Bowland Shale is unlikely to pose a risk to its overlying groundwater quality when the induced fracture aperture is ≤200 µm. With the fracture aperture ≥1000 µm, the upward chloride flux becomes very sensitive to the upward fracture height growth and hydraulic conductivity of the multilayered bedrock system. In the extremely unlikely event of the upward fracture growth directly connecting the shale formation to the overlying Sherwood Sandstone aquifer with the fracture aperture ≥1000 µm, the upward chloride mass flux could potentially pose risks to the overlying aquifer in 100 years. The model study also revealed that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, reducing further upward flux toward the overlying aquifers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of urban metabolism provide important insights for environmental management of cities, but are not widely used in planning practice due to a mismatch of data scale and coverage. This paper introduces the Spatial Allocation of Material Flow Analysis (SAMFA) model as a potential decision support tool aimed as a contribution to overcome some of these difficulties and describes its pilot use at the county level in the Republic of Ireland. The results suggest that SAMFA is capable of identifying hotspots of higher material and energy use to support targeted planning initiatives, while its ability to visualise different policy scenarios supports more effective multi-stakeholder engagement. The paper evaluates this pilot use and sets out how this model can act as an analytical platform for the industrial ecology–spatial planning nexus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A PSS/E 32 model of a real section of the Northern Ireland electrical grid was dynamically controlled with Python 2.5. In this manner data from a proposed wide area monitoring system was simulated. The area is of interest as it is a weakly coupled distribution grid with significant distributed generation. The data was used to create an optimization and protection metric that reflected reactive power flow, voltage profile, thermal overload and voltage excursions. Step changes in the metric were introduced upon the operation of special protection systems and voltage excursions. A wide variety of grid conditions were simulated while tap changer positions and switched capacitor banks were iterated through; with the most desirable state returning the lowest optimization and protection metric. The optimized metric was compared against the metric generated from the standard system state returned by PSS/E. Various grid scenarios were explored involving an intact network and compromised networks (line loss) under summer maximum, summer minimum and winter maximum conditions. In each instance the output from the installed distributed generation is varied between 0 MW and 80 MW (120% of installed capacity). It is shown that in grid models the triggering of special protection systems is delayed by between 1 MW and 6 MW (1.5% to 9% of capacity), with 3.5 MW being the average. The optimization and protection metric gives a quantitative value for system health and demonstrates the potential efficacy of wide area monitoring for protection and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence that some of the fungal metabolites present in food and feed may act as potential endocrine disruptors is increasing. Enniatin B (ENN B) is among the emerging Fusarium mycotoxins known to contaminate cereals. In this study, the H295R and neonatal porcine Leydig cell (LC) models, and reporter gene assays (RGAs) have been used to investigate the endocrine disrupting activity of ENN B. Aspects of cell viability, cell cycle distribution, hormone production as well as the expression of key steroidogenic genes were assessed using the H295R cell model. Cell viability and hormone production levels were determined in the LC model, while cell viability and steroid hormone nuclear receptor transcriptional activity were measured using the RGAs. ENN B (0.01–100 μM) was cytotoxic in the H295R and LC models used; following 48 h incubation with 100 μM. Flow cytometry analysis showed that ENN B exposure (0.1–25 μM) led to an increased proportion of cells in the S phase at higher ENN B doses (>10 μM) while cells at G0/G1 phase were reduced. At the receptor level, ENN B (0.00156–15.6 μM) did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs), however cell viability was affected at 15.6 μM. Measurement of hormone levels in H295R cells revealed that the production of progesterone, testosterone and cortisol in exposed cells were reduced, but the level of estradiol was not significantly affected. There was a general reduction of estradiol and testosterone levels in exposed LC. Only the highest dose (100 μM) used had a significant effect, suggesting the observed inhibitory effect is more likely associated with the cytotoxic effect observed at this dose. Gene transcription analysis in H295R cells showed that twelve of the sixteen genes were significantly modulated (p < 0.05) by ENN B (10 μM) compared to the control. Genes HMGR, StAR, CYP11A, 3βHSD2 and CYP17 were downregulated, whereas the expression of CYP1A1, NR0B1, MC2R, CYP21, CYP11B1, CYP11B2 and CYP19 were upregulated. The reduction of hormones and modulation of genes at the lower dose (10 μM) in the H295R cells suggests that adrenal endocrine toxicity is an important potential hazard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taste and odour compounds, especially geosmin (GSM) and 2-methylisoborneol (2-MIB), cause major problems in both drinking water and aquaculture industries world-wide. Aquaculture in particular has experienced significant financial losses due to the accumulation of taint compounds prior to harvest resulting in consumer rejection. UV-TiO2 photocatalysis has been demonstrated to remove GSM and 2-MIB at laboratory scale but the development of a continuous flow reactor suitable for use in water treatment has not been investigated. In this study, a pilot packed bed photocatalytic reactor was developed and evaluated for water treatment with both laboratory and naturally tainted samples. A significant reduction of both 2-MIB and GSM was achieved in both trials using the packed bed reactor unit. With the laboratory spiked water (100ngL-1 of each compound added prior to treatment), detectable levels were reduced by up to 97% after a single pass through the unit. When the reactor was used to treat water in a fish farm where both compounds were being produced in situ (2-MIB: 19ngL-1 and GSM: 14ngL-1) a reduction of almost 90% in taint compounds was achieved. These very encouraging promising results demonstrate the potential of this UV-TiO2 photocatalytic reactor for water treatment in fish rearing systems and other applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.