935 resultados para post-transcriptional control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During recent years, several Leishmania infantum genes have been cloned and characterized. Here, we have summarized the available information on the gene organization and expression in this protozoan parasite. From a comparative analysis, the following outstanding features were found to be common to most of the genes characterized: tandemly organized genes with conserved coding regions and divergent untranslated regions, polycistronic transcription and post-transcriptional regulation of gene expression. The analysis of chromosomes of L. infantum by pulsed-field electrophoresis showed the existence of both size and number polymorphisms such that each strain has a distinctive molecular karyotype. Despite this variability, highly conserved physical linkage groups exists among different strains of L. infantum and even among Old World Leishmania species. Gene mapping on the L. infantum molecular karyotype evidenced a bias in chromosomal distribution of, at least, the evolutionary conserved genes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myhre syndrome (MIM 139210) is a developmental disorder characterized by short stature, short hands and feet, facial dysmorphism, muscular hypertrophy, deafness and cognitive delay. Using exome sequencing of individuals with Myhre syndrome, we identified SMAD4 as a candidate gene that contributes to this syndrome on the basis of its pivotal role in the bone morphogenetic pathway (BMP) and transforming growth factor (TGF)-β signaling. We identified three distinct heterozygous missense SMAD4 mutations affecting the codon for Ile500 in 11 individuals with Myhre syndrome. All three mutations are located in the region of SMAD4 encoding the Mad homology 2 (MH2) domain near the site of monoubiquitination at Lys519, and we found a defect in SMAD4 ubiquitination in fibroblasts from affected individuals. We also observed decreased expression of downstream TGF-β target genes, supporting the idea of impaired TGF-β-mediated transcriptional control in individuals with Myhre syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-coding small RNAs (sRNAs) have important regulatory functions in bacteria. In Pseudomonas spp., about 40 sRNAs have been reported until the end of 2008, a number that almost certainly is an underestimate. We provide a summary of the coding regions for these sRNAs is Pseudomonas aeruginosa. The functions of some Pseudomonas sRNAs can be deduced from those of homologous well-characterized sRNAs of Escherichia coli, e.g. 6S RNA (a stationary phase regulator of RNA polymerase) and tmRNA (a component of a machinery serving to eliminate truncated polypeptides). Two sRNAs of P. aeruginosa, PrrF1 and PrrF2, whose expression is repressed by the Fur repressor in the presence of iron, inhibit translation initiation of mRNAs specifying superoxide dismutase (sodB), succinate dehydrogenase (sdhABCD) and anthranilate degradation (antABC), via a base-paring mechanism. As a consequence, these mRNAs are poorly expressed under conditions of iron limitation. Two further sRNAs of P. aeruginosa, RsmY and RsmZ, whose expression is positively controlled by the GacS/GacA two-component system in response to unknown signals, act as scavengers of the RNA-binding protein RsmA. In this way, translational repression exerted by RsmA on target mRNAs can be relieved. The Gac/Rsm signal transduction pathway globally regulates motility and the formation of extracellular products in pseudomonas spp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antigenic variation in Trypanosoma brucei is a highly sophisticated survival strategy involving switching between the transcription of one of an estimated thousand variant surface glycoprotein (VSG) genes. Switching involves either transcriptional control, resulting in switching between different VSG expression sites; or DNA rearrangement events slotting previously inactive VSG genes into an active VSG expression site. In recent years, considerable progress has been made in techniques allowing us to genetically modify infective bloodstream form trypanosomes. This is allowing us to reengineer VSG expression sites, and look at the effect on the mechanisms subsequently used for antigenic variation. We can now begin a dissection of a highly complicated survival strategy mediated by many different mechanisms operating simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty acid modification and phosphorylation) and protein-protein interactions (with caveolin-1 and heat shock protein 90) that direct impinge upon the duration and magnitude of NO release. This review will summarize this information and apply the post-translational control mechanisms to disease states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. METHOD We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. CONCLUSION Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of misregulation associated to PTTG1 over-expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: It has been known for a long time that the efficiency and toxicity of drugs change during a 24-h period. However, the molecular mechanisms involved in these processes have started to emerge only recently. AREAS COVERED: This review aims to highlight recent discoveries showing the direct role of the molecular circadian clock in xenobiotic metabolism at the transcriptional and post-transcriptional levels in the liver and intestine, and the different ways of elimination of these metabolized drugs via biliary and urine excretions. Most of the related literature focuses on transcriptional regulation by the circadian clock of xenobiotic metabolism in the liver; however, the role of this timing system in the excretion of metabolized drugs and the importance of the kidney in this phenomenon are generally neglected. The goal of this review is to describe the molecular mechanisms involved in rhythmic drug metabolism and excretion. EXPERT OPINION: Chronopharmacology is used to analyze the metabolism of drugs in mammals according to the time of day. The circadian timing system plays a key role in the changes of toxicity of drugs by influencing their metabolisms in the liver and intestine in addition to their excretion via bile flow and urine.