935 resultados para population estimates
Resumo:
The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Resumo:
Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)
Resumo:
Pacific coastal bottlenose dolphins (Tursiops truncatus gilli) have apparently moved to Monterey Bay as a result of a shift north of their known range. Between 1983 and 1993, 417 sightings were reported off central California. Eighty-four boat-based surveys, between October 1990 and November 1993, resulted in the photo-identification of 68 uniquely marked individuals. School size ranged between 2 and 35 animals (mean = 16.60, S.D. = 7.72). Forty-three (63%) of the dolphins identified were previously photographed in the Southern California Bight before 1989. Jolly-Seber population estimates indicated an increase in the Monterey Bay population from 1990 to 1993. At least 13 of the photo-identified dolphins were present in Monterey Bay throughout the study period. All but two of the calculated coefficients of association were 0.35, indicating a strong bond among resident animals. The occurrence of an El Niño from January 1992 to the end of 1993 may have affected the number of animals present in the bay: mean school size was significantly greater during El Niño.
Resumo:
Estimates of dolphin school sizes made by observers and crew members aboard tuna seiners or by observers on ship or aerial surveys are important components of population estimates of dolphins which are involved in the yellowfin tuna fishery in the eastern Pacific. Differences in past estimates made from tuna seiners and research ships and aircraft have been noted by Brazier (1978). To compare various methods of estimating dolphin school sizes a research cruise was undertaken with the following major objectives: 1) compare estimates made by observers aboard a tuna seiner and in the ship's helicopter, from aerial photographs, and from counts made at the backdown channel, 2) compare estimates of observers who are told the count of the school size after making their estimate to the observer who is not aware of the count to determine if observers can learn to estimate more accurately, and 3) obtain movie and still photographs of dolphin schools of known size at various stages of chase, capture and release to be used for observer training. The secondary objectives of the cruise were to: 1) obtain life history specimens and data from any dolphins that were killed incidental to purse seining. These specimens and data were to be analyzed by the U.S. National Marine Fisheries Service ( NMFS ) , 2) record evasion tactics of dolphin schools by observing them from the helicopter while the seiner approached the school, 3) examine alternative methods for estimating the distance and bearing of schools where they were first sighted, 4) collect the Commission's standard cetacean sighting, set log and daily activity data and expendable bathythermograph data. (PDF contains 31 pages.)
Resumo:
A comparison of some different European methods of estimating the numbers of fish in a lake using different fishing gear is described. The different gears used were 1. surface trawl used by night 2. bottom trawl used by day 3. trammel nets, set in the evening and lifted in the morning 4. surface seine net used by night 5. bottom seine net used by day 6. Fyke nets, emptied each morning and evening 7. gill nets, set in the evening and lifted in the morning. The most variable catches were from those gears used by day on the bottom and the least variable were those used by night at the surface. The work continued by examining the use of acoustic systems for pelagic fish stock assessment. This gear gave reasonable population estimates for pelagic fish 10m and more below the surface. The advantage of the accoustic method is that it is quick and requires little labour. Its disadvantage is that it is not possible to identify the species and so it must be supplemented by another, conventional method.
Resumo:
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.
Resumo:
Assessment of walleye pollock, Theragra chalcogramma, in the eastern Bering Sea is complicated because the species is semi-pelagic in habit. Annual bottom trawl surveys provide estimates of demersal abundance on the eastern Bering Sea shelf. Every third year (starting in 1979), an extended area of the shelf and slope is surveyed and an echo integration-midwater trawl survey provides estimates of pollock abundance in midwater. Overall age-specific population and biomass estimates are obtained by summing the demersal and midwater results, assuming that the bottom trawl samples only pollock inhabiting the lower 3 m of the water column. Total population estimates have ranged from 134 x 109 fish in 1979 to 27 x 109 fish in 1988. The very high abundance observed in 1979 reflects the appearance of the unusually large 1978 year class. Changes in age-specific abundance estimates have documented the passage of strong (1978, 1982, and 1984) and weak year classes through the fishery. In general, older fish are more demersally oriented and younger fish are more abundant in midwater, but this trend was not always evident in the patterns of abundance of 1- and 2-year-old fish. As the average age of the population has increased, so has the relative proportion of pollock estimated by the demersal surveys. Consequently, it is unlikely that either technique can be used independently to monitor changes in abundance and age composition. Midwater assessment depends on pelagic trawl samples for size and age composition estimates, so both surveys are subject to biases resulting from gear performance and interactions between fish and gear. In this review, we discuss survey methodology and evaluate assumptions regarding catchability and availability as they relate to demersal, midwater, and overall assessment.
Resumo:
This is the River Teign Fisheries Survey from August 1979 by the South West Water Authority. The River Teign was sampled by electrofishing at fifteen sites and population estimates, average lengths, weights and biomass were calculated for each species present, and where possible for individual age classes of those species. Results indicated that a stable community structure existed, and little had changed from 1963. Salmonids accounted for the majority of the biomass, and within this group trout were the most abundant in the headwater, and salmon in the lower reaches. All tributaries sampled had higher densities and biomass than the main river. The results were compared with other data collected from similar surveys of other rivers in Devon by the South West Water Authority. Both the average length of each age class, and the biomass in the main River Teign appeared to be lower than in most other rivers, although in the Rivers Wray and Lemon these values were particularly high.
Resumo:
This is the Fish communities in rivers to be affected by Roadford Reservoir report produced by South West Water Authority in 1978. Surveys were carried, out on the Rivers Wolf, Thrushel, Lew and Lumburn, which are likely to be affected directly and indirectly by the construction and use of Roadford Reservoir. Of the upper reaches of three rivers to be affected directly by water releases, two were found to support abundant stocks of salmon and trout, and the third was found to contain abundant stocks of trout and eels. The River Thrushel will be affected indirectly and in this river salmon and trout stocks were present in slightly lower abundance than in others. Population estimates, densities, mean lengths and approximate biomass values were calculated. Other species were present in all rivers, usually in great abundance.
Resumo:
The Northern Ireland Hare Survey documented the distribution of the Irish Hare (Lepus timidus hibernicus). Historical game bag records and other, more contemporary, records of hare distribution were examined. These data indicate how numbers of L t. hibernicus may have changed over the last 140 years. The results of the Northern Ireland Hare Survey suggested that L. t. hibernicus was widespread throughout Northern Ireland. Current average densities are no more than 0.65 hares/km(2). Game bag records indicate that hare densities may have been much higher in the past, with a maximum of 138 hares/km(2) recorded on Crom Estate, Co. Fermanagh, in 1864. Evidence from hare distribution recorded during the Northern Ireland Rabbit Survey indicates that hare numbers declined between 1984 and 1994. Evidence from all sources suggests that L. t. hibernicus has declined in abundance substantially, with present total population estimates for Northern Ireland ranging from 8250 to 21000 individuals. Flushing data indicate that rushes and hedgerows are important diurnal resting areas for hares. While the principal reason for the decline in numbers of L. t. hibernicus in Northern Ireland is not clear, more species-rich pasture and provision of areas of cover, such as rushes, may arrest further declines, or indeed promote numbers of hares, particularly in lowland areas.
Resumo:
The recent identification of Myotis brandtii in Ireland raised the possibility that many roosts previously identified as M. mystacinus had the potential of being misidentified M. brandtii. Thus, the distribution and population estimates for M. mystacinus may have been over-estimated, while M. brandtii may have been under-estimated. Results from an all Ireland genetic survey of known M. mystacinus maternity roosts confirm that no long term misidentification has taken place. All specimens caught and sampled were M. mystacinus. Additonally, no further records of M. brandtii were found during six nights of woodland trapping using the acoustic lure. While the status of M. mystacinus in Ireland is now listed as ‘least concern’ in the Irish Red List, M. brandtii is listed as ‘data deficient’ and cannot currently be considered a resident species
Resumo:
Even moderate arsenic exposure may lead to health problems, and thus quantifying inorganic arsenic (iAs) exposure from food for different population groups in China is essential. By analyzing the data from the China National Nutrition and Health Survey (CNNHS) and collecting reported values of iAs in major food groups, we developed a framework of calculating average iAs daily intake for different regions of China. Based on this framework, cancer risks from As in food was deterministically and probabilistically quantified. The article presents estimates for health risk due to the ingestion of food products contaminated with arsenic. Both per individual and for total population estimates were obtained. For the total population, daily iAs intake is around 42 mu g day(-1), and rice is the largest contributor of total iAs intake accounting for about 60%. Incremental lifetime cancer risk from food iAs intake is 106 per 100,000 for adult individuals and the median population cancer risk is 177 per 100,000 varying between regions. Population in the Southern region has a higher cancer risk than that in the Northern region and the total population. Sensitive analysis indicated that cancer slope factor, ingestion rates of rice, aquatic products and iAs concentration in rice were the most relevant variables in the model, as indicated by their higher contribution to variance of the incremental lifetime cancer risk. We conclude that rice may be the largest contributor of iAs through food route for the Chinese people. The population from the South has greater cancer risk than that from the North and the whole population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E3) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≤−0.75 diopters (D), high myopia ≤−6D, hyperopia ≥1D and astigmatism ≥1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≥25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4–30.9], high myopia 2.7 % (95 % CI 2.69–2.73), hyperopia 25.2 % (95 % CI 25.0–25.4) and astigmatism 23.9 % (95 % CI 23.7–24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8–52.5) in 25–29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe.