938 resultados para poly-L-glutamic acid
Resumo:
Tetraaniline-block-poly(L-lactide) diblock oligomers are synthesized via ring-opening polymerization. The diblock oligomers cast from all L-lactide selective solvent (chloroform) show spherical aggregates for the leucoemeraldine state, and ring-like structures that are composed of much smaller spherical aggregates for the emeraldine state. The formation mechanisms of the two different surface morphologies are discussed in detail.
Resumo:
Biodegradable poly(L-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.
Resumo:
The poly(L-lactide) (PLLA)/starch blends were prepared by the PLLA grafting starch (PLLA-g-St) copolymers as a compatibilizer, and their thermal, mechanical and morphological characterizations were performed to show the better performance of these blends compared to the virgin PLLA/starch blend without the compatibilizer, including PLLA crystallinity, interfacial adhesion between the PLLA matrix and starch dispersive phases, mechanical test, medium resistance, and contact angle. The 50/50 composite of PLLA/starch compatibilized by 10% PLLA-g-St gave a tensile strength of 24.7 MPa and an elongation at break of 8.7%, respectively, vs. 11.3 MPa and 1.5%, respectively, for the simple 50/50 blend of PLLA/starch.
Resumo:
Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.
Resumo:
The quasiliving characteristics of the ringopening polymerization of epsilon-caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly (F-caprolactone) (PCL)-poly(L-lactide) (PLA) cliblock copolymers with the sequential addition of the monomers CL and L-lactide. The block structure was confirmed by H-1-NMR, C-13-NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide-angle X-ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively.
Resumo:
The nonisothermal crystallization behavior of poly (L-lactide)-poly(ethylene glycol) ( PLLA-PEG) diblock copolymer was studied by means of real-time WAXD, DSC and POM, and Ozawa equation was used to analyze the kinetics of PLLA-PEG under nonisothermal crystallization conditions. During the crystallization of the high-T-m block (PLLA), the low-T-m block (PEG) acts as a noncrystalline diluent, and the crystallization behavior of PLLA obeys the Ozawa theory. When the PEG block begins to crystallize, the PLLA phase is always partially solidified and the presence of the spherulitic microstructure of PLLA profoundly restricts its crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. Furthermore, the study of the crystalline morphology of PLLA-PEG at different cooling rates indicates that when the cooling rate is from low to high, the crystalline morphology undergoes a transformation from the ring-banded spherulites to the typical Maltese cross spherulites, which experiences the mixed crystalline morphologies of ring-banded and typical Maltese cross spherulites, and the spherulitic size becomes smaller.
Resumo:
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.
Resumo:
It is found that Ply adsorbed roughed silver electrode, it is easy to immobilize MP-11 with the electrostatic interaction and to prepare the MP-11/Ply/Ag modified electrode. The preparation method of the modified electrode is simple. In addition, the modified electrode obtained shows the high and stable electrocatalytic activity for O-2 reduction. It is also found that when the sixth coordination of heme in MP-11 is replaced with other coordination species with stronger coordination ability, such as imidazole, its formal redox potential shifts to the negative direction and the electrocatalytic activity for O-2 reduction is reduced.
Resumo:
Rare earth (III)-Asp-Arg and Ca(II)-Asp-Arg systems were studied by potentiometric titration under physiological conditon. The species of each system were determined. The distribution of Tb (III) and Ca(II) species was discussed, as well as in the quaternary system of Tb(III)-Ca(II)-Asp-Arg.
Resumo:
The L-a. a, oxidase of Agkistrodon blomhof fii ussurensis of Changbai Mountains in northeast of China has been separated by using ion-exchange and gel filtration techniques, This enzyme is composed of two subunits, the molecular weight of one subunit is about 36 000, the another is about 57 000, determined by sodium dodecyl sulfate-polyacryamide gel electrophoresis and matrix assisted laser desorption ion/time of flight mass spectrometry, The activity of L-a, a. oxidase determined using L-Leu as substrate. The optimal pH of the enzyme is 4. 5 similar to 5. 5 and 8 similar to 9. The UV-Visible absorption spectrum of L-a, a. oxidase shows the characteristics of flavor-proteins.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
The spreading behavior of poly(2-acrylamidohexadecylsulfonic acid-co-styrene) (PAMC16SSt) random co-polymers with various compositions was investigated by measurements of the surface pressure-area (pi-A) isotherms. The random copolymers formed stable cond
Resumo:
Poly-L-Lactide is a bioresorbable polymer which degrades through hydrolysis of its ester linkage influenced by initial molecular weight and degree of crystallinity. Polymers belonging to the aliphatic polyester family currently represent the most attractive group of polymers that meet the medical and physical demands for safe clinical applications. Compression moulded PLLA pellets were produced as rods, sterilized and degraded both in vitro and in vivo (sub-dermal implantation model). The material molecular weight, crystallinity, mechanical strength and thermal properties were evaluated. In both in vitro and in vivo environments, degradation proceeded at the same rate and followed the general sequence of aliphatic polyester degradation, ruling out enzymes accelerating the degradation rate in vivo. By 44 weeks duration of implantation the PLLA rods were still biocompatible, before any mass loss was observed.
Resumo:
Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal physiological environment. To evaluate the degradation of PLLA in an accelerated time period, PLLA pellets were processed by compression moulding into tensile test specimens, prior to being sterilized by ethylene oxide gas (EtO) and degraded in a phosphate-buffered solution (PBS) at both 50°C and 70°C. On retrieval, at predetermined time intervals, procedures were used to evaluate the material's molecular weight, crystallinity, mechanical strength, and thermal properties. The results from this study suggest that at both 50°C and 70°C, degradation proceeds by a very similar mechanism to that observed at 37°C in vitro and in vivo. The degradation models developed also confirmed the dependence of mass loss, melting temperature, and glass transition temperature (Tg) on the polymer's molecular weight throughout degradation. Although increased temperature appears to be a suitable method for accelerating the degradation of PLLA, relative to its physiological degradation rate, concerns still remain over the validity of testing above the polymer's Tg and the significance of autocatalysis at increased temperatures.
Resumo:
Poly--lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioabsorbable. Degradation of PLLA proceeds through hydrolysis of the ester bonds in the polymer chains and is influenced significantly by the polymer's molecular weight and crystallinity. To evaluate the effects of processing and sterilisation on these properties, PLLA pellets were either compression moulded or extruded, subjected to annealing at 120°C for 4 h and sterilised by ethylene oxide (EtO) gas. Procedures were used to evaluate the mechanical properties, molecular weight and crystallinity. Upon processing, the crystallinity of the material fell from 61% for the PLLA pellets to 12% and 20% for the compressed and extruded components, respectively. After annealing, crystallinity increased to 43% for the compression-moulded material and 40% for the extruded material. Crystallinity further increased upon EtO sterilisation. A slight decrease in molecular weight was observed for the extruded material through processing, annealing and sterilisation. Young's modulus generally increased with increasing crystallinity, and extension at break and tensile strength decreased. The results from this investigation suggest that PLLA is sensitive to processing and sterilisation, altering properties critical to its degradation rate.