979 resultados para poly(vinyl alcohol)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A membrane with interpenetrating networks between poly(vinyl alcohol) (PVA) and poly(styrene sulfonic acid) (PSSA) coupled with a high proton conductivity is realized and evaluated as a proton exchange membrane electrolyte for a direct methanol fuel cell (DMFC). Its reduced methanol permeability and improved performance in DMFCs suggest the new blend as an alternative membrane to Nafion membranes. The membrane has been characterized by powder X-ray diffraction, scanning electron microscopy, time-modulated differential scanning calorimetry, and thermogravimetric analysis in conjunction with its mechanical strength. The maximum proton conductivity of 3.3×10−2 S/cm for the PVA–PSSA blend membrane is observed at 373 K. From nuclear magnetic resonance imaging and volume localized spectroscopy experiments, the PVA–PSSA membrane has been found to exhibit a promising methanol impermeability, in DMFCs. On evaluating its utility in a DMFC, it has been found that a peak power density of 90 mW/cm2 at a load current density of 320 mA/cm2 is achieved with the PVA–PSSA membrane compared to a peak power density of 75 mW/cm2 at a load current density of 250 mA/cm2 achievable for a DMFC employing Nafion membrane electrolyte while operating under identical conditions; this is attributed primarily to the methanol crossover mitigating property of the PVA–PSSA membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly (vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456372]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabilized forms of heteropolyacids (HPAs), namely phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA), are incorporated into poly (vinyl alcohol) (PVA) cross-linked with sulfosuccinic acid (SSA) to form mixed-matrix membranes for application in direct methanol fuel cells (DMFCs). Bridging SSA between PVA molecules not only strengthens the network but also facilitates proton conduction in HPAs. The mixed-matrix membranes are characterized for their mechanical stability, sorption capability, ion-exchange capacity, and wetting in conjunction with their proton conductivity, methanol permeability, and DMFC performance. Methanol-release kinetics is studied ex situ by volume-localized NMR spectroscopy (employing point-resolved spectroscopy'') with the results clearly demonstrating that the incorporation of certain inorganic fillers in PVA-SSA viz., STA and PTA, retards the methanol-release kinetics under osmotic drag compared to Nafion, although PVA-SSA itself exhibits a still lower methanol permeability. The methanol crossover rate for PVA-SSA-HPA-bridged-mixed-matrix membranes decreases dramatically with increasing current density rendering higher DMFC performance in relation to a DMFC using a pristine PVA-SSA membrane. A peak power density of 150 mW/cm(2) at a load current density of 500 mA/cm(2) is achieved for the DMFC using a PVA-SSA-STA-bridged-mixed-matrix-membrane electrolyte. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3465653] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemispherical colloidal nanowells or microwells with hollow interiors are becoming increasingly important for the encapsulation of functional materials. There has been rapid progress to develop new methods to obtain such structures. In this work, we present emulsification approach to generate hemisphere and microcapsules of biocompatible organic polymer. The precise control over the size is exhibited by applying variable vortex effect. The hemispheres and microcapsules of a copolymer (BPVA-PVA) were characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These structures were used for loading of hydrophilic molecules and submicron colloidal particles to demonstrate their potential application. The introduction of hydrophobic groups on poly(vinyl alcohol) was crucial to obtain these structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the fabrication of silver nanotriangle array using angle resolved nanosphere lithography and utilizing the same for enhancing fluorescence. The well established nanosphere lithography is modified by changing the angle of deposition between the nanosphere mask and the beam of silver being deposited resulting in nanotriangles of varying surface area and density. The 470 nm plasmon resonance wavelength of the substrate was determined using minimum reflectivity method which closely matches with excitation wavelength of the fluorophore. Ten times enhancement in fluorescence emission intensity is obtained from fluorescein isothiocyanate coated on top of silver nanotriangle array separated by a spacer layer of poly vinyl alcohol as compared to glass. The enhanced fluorescence emission is attributed to the increase in local field enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly (ethylene-co-methacrylic acid) (PEMA) and poly (vinyl alcohol-co-ethylene) (EVOH) were studied for encapsulating Schottky structured organic devices. A calcium degradation test was used to determine water vapor transmission rates and to determine the moisture barrier performance of neat and blend films. Moisture barrier analysis for the neat and blend compositions was discussed concerning the interactions in the blend, diffusivity of water molecules through the unit cell systems, and the occupiable free volumes available in the unit cells using molecular dynamics simulations. The experimental results of water vapor permeation were correlated with diffusion behavior predicted from molecular dynamics simulations results. The effectiveness of the blend as a suitable barrier material in increasing the lifetime of an encapsulated Schottky structured organic device was determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of single-walled carbon nanohoms (SWNH) and SWNH plus few-layer graphene (EG)-reinforced poly(vinyl alcohol) (PVA) matrix composites have been measured using the nanoindentation technique. The elastic modulus (E) and hardness (H) of PVA were found to improve by similar to 315% and similar to 135%, respectively, upon the addition of just 0.4 wt % SWNH. These properties were found to be comparable to those obtained upon the addition of 0.2 wt % single-walled nanotubes (SWNT) to PVA. Furthermore, upon binary addition of 0.2 wt % EG and 0.4 wt % SWNH to PVA, benefits in the form of similar to 400% and similar to 330% synergy in E and H, respectively, were observed, along with an increased resistance to viscoelastic deformation. The reasons for these improvements are discussed in terms of the dimensionality of nanocarbon, the effectiveness of nanocarbon and polymer matrix interaction, and the influence of nanocarbon on the degree of crystallinity of the polymer. The results from SWNH reinforcement in this study demonstrate the scope for a novel and, in contrast to SWNT composites, a commercially feasible opportunity for strengthening polymer matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aplicação tópica de doadores de óxido nítrico é conhecida pelos seus efeitos benéficos no reparo tecidual cutâneo. O objetivo deste trabalho foi avaliar os efeitos da associação de biomateriais com doadores de óxido nítrico no reparo tecidual cutâneo de camundongos. Camundongos swiss machos foram submetidos a lesões excisionais por punch de biópsia de 8 mm no dorso. Os animais foram separados em 4 grupos (n=6 em cada grupo) de acordo com a aplicação do curativo de polivinil álcool e hidrogel sobre a lesão de punch: a) grupo polivinil álcool com grupos tiol e Pluronic F-127 (PVA-SH/F127) - tratado com hidrogel sem S- nitrosoglutationa (GSNO) e filme sem óxido nítrico; b) grupo polivinil álcool S-nitrosado (PVA-SNO/F127-GSNO) - tratado com hidrogel contendo GSNO e filme com óxido nítrico; c) grupo PVA-SNO - tratado apenas com filme óxido nítrico e d) grupo PVA-SNO/ F127 - tratado com hidrogel sem GSNO e filme com óxido nítrico. Os animais foram tratados por 7 dias consecutivos com aplicação diária de curativos com seus respectivos biomateriais. Após 7 dias de tratamento, foram retirados os curativos e as lesões foram deixadas cicatrizar por segunda intenção. O grupo tratado com filme de PVA-SNO (d) associado ao hidrogel F127, comparado com os demais grupos descritos acima, apresentou melhora no reparo tecidual, melhora da contração da lesão, diminuição do gap epitelial e densidade celular, aceleração da fase inflamatória, aumento da diferenciação miofibroblástica e aumento da expressão de colágeno do tipo III (p<0,05, ao menos). Com base nesses dados, a combinação de filmes PVA liberadores de óxido nítrico com F-127 pode representar uma nova abordagem para o tratamento de lesões cutâneas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V∈s was achieved, which is comparable to that of single-crystal CuPc devices (0.1-1 cm2/V∈s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed. © 2009 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel microstructured and pH sensitive poly(acryliac acid-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) (P(AA-co-HEMA)/PVA) interpenetrating network (IPN) hydrogel films were prepared by radical precipitation copolymerization and sequential IPN technology. The first P(AA-co-HEMA) network was synthesized in the present of IPN aqueous solution by radical initiating, then followed by condensation reaction (Glutaraldehyde as crosslinking agent) within the resultant latex, it formed multiple IPN microstructured hydrogel film. The film samples were characterized by IR, SEM and DSC. Swelling and deswelling behaviors and mechanical property showed the novel multiple IPN nanostuctured film had rapid response and good mechanical property. The IPN films were studied as controlled drug delivery material in different pH buffer solution using cationic compound, crystal violet as a model drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel nanostructured, high transparent, and pH sensitive poly(2-hydroxyethyl methacrylate-co-methacryliac acid)/poly(vinyl alcohol) (P(HEMA-co-MA)/PVA) interpenetrating polymer network (IPN) hydrogel films were prepared by precipitation copolymerization of aqueous phase and sequential IPN technology. The first P(HEMA-co-MA) network was synthesized in aqueous solution of PVA, then followed by aldol condensation reaction, it formed multiple IPN nanostructured hydrogel film. The film samples were characterized by IR, SEM, DSC, and UV-vis spectrum. The transmittance arrived at 93%. Swelling and deswelling behaviors showed the multiple IPN nanostructured film had rapid response. The mechanical properties of all the IPN films improved than that of PVA film. Using crystal violet as a model drug, the release behaviors of the films were studied.