922 resultados para piezoelectricity,energy harvesting,SSHI,micropower,power conversion
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A liberalização dos mercados de energia elétrica e a crescente integração dos recursos energéticos distribuídos nas redes de distribuição, nomeadamente as unidades de produção distribuída, os sistemas de controlo de cargas através dos programas de demand response, os sistemas de armazenamento e os veículos elétricos, representaram uma evolução no paradigma de operação e gestão dos sistemas elétricos. Este novo paradigma de operação impõe o desenvolvimento de novas metodologias de gestão e controlo que permitam a integração de todas as novas tecnologias de forma eficiente e sustentável. O principal contributo deste trabalho reside no desenvolvimento de metodologias para a gestão de recursos energéticos no contexto de redes inteligentes, que contemplam três horizontes temporais distintos (24 horas, 1 hora e 5 minutos). As metodologias consideram os escalonamentos anteriores assim como as previsões atualizadas de forma a melhorar o desempenho total do sistema e consequentemente aumentar a rentabilidade dos agentes agregadores. As metodologias propostas foram integradas numa ferramenta de simulação, que servirá de apoio à decisão de uma entidade agregadora designada por virtual power player. Ao nível das metodologias desenvolvidas são propostos três algoritmos de gestão distintos, nomeadamente para a segunda (1 hora) e terceira fase (5 minutos) da ferramenta de gestão, diferenciados pela influência que os períodos antecedentes e seguintes têm no período em escalonamento. Outro aspeto relevante apresentado neste documento é o teste e a validação dos modelos propostos numa plataforma de simulação comercial. Para além das metodologias propostas, a aplicação permitiu validar os modelos dos equipamentos considerados, nomeadamente, ao nível das redes de distribuição e dos recursos energéticos distribuidos. Nesta dissertação são apresentados três casos de estudos, cada um com diferentes cenários referentes a cenários de operação futuros. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias e algoritmos propostos. Adicionalmente são apresentadas comparações das metodologias propostas relativamente aos resultados obtidos, complexidade de gestão em ambiente de simulação para as diferentes fases da ferramenta proposta e os benefícios e inconvenientes no uso da ferramenta proposta.
Resumo:
Due to the global crisis o f climate change many countries throughout the world are installing the renewable energy o f wind power into their electricity system. Wind energy causes complications when it is being integrated into the electricity system due its intermittent nature. Additionally winds intennittency can result in penalties being enforced due to the deregulation in the electricity market. Wind power forecasting can play a pivotal role to ease the integration o f wind energy. Wind power forecasts at 24 and 48 hours ahead of time are deemed the most crucial for determining an appropriate balance on the power system. In the electricity market wind power forecasts can also assist market participants in terms o f applying a suitable bidding strategy, unit commitment or have an impact on the value o f the spot price. For these reasons this study investigates the importance o f wind power forecasts for such players as the Transmission System Operators (TSOs) and Independent Power Producers (IPPs). Investigation in this study is also conducted into the impacts that wind power forecasts can have on the electricity market in relation to bidding strategies, spot price and unit commitment by examining various case studies. The results o f these case studies portray a clear and insightful indication o f the significance o f availing from the information available from wind power forecasts. The accuracy o f a particular wind power forecast is also explored. Data from a wind power forecast is examined in the circumstances o f both 24 and 48 hour forecasts. The accuracy o f the wind power forecasts are displayed through a variety o f statistical approaches. The results o f the investigation can assist market participants taking part in the electricity pool and also provides a platform that can be applied to any forecast when attempting to define its accuracy. This study contributes significantly to the knowledge in the area o f wind power forecasts by explaining the importance o f wind power forecasting within the energy sector. It innovativeness and uniqueness lies in determining the accuracy o f a particular wind power forecast that was previously unknown.
Resumo:
En aquest projecte es pretén implementar un dispositiu capaç de ser auto-suficient i no dependre de cap tipus de pila, bateria o fil elèctric que l’abasteixi d’energia elèctrica. El dispositiu recol·lectarà la energia magnètica generada per la corrent elèctrica a un fil i la transformarà en energia elèctrica, que serà emmagatzemada per el seu posterior ús. A demès, aquest projecte s’ha desenvolupat en col·laboració amb un segon projecte, dintre del qual s’implementarà una xarxa de sensors, mitjançant el protocol MIWI. Aquest projecte es divideix en tres grans blocs. El primer bloc del projecte serà una introducció teòrica de tots els coneixements relacionats amb el concepte d’energy harvesting i els mecanismes físic implicats. Al segon bloc podrem veure com s’han realitzat els càlculs, simulacions i posada en marxa, dels diferents elements que formaran el dispositiu recol·lector d’energia. Per últim en el tercer bloc veurem el prototip ja implementat. Es valoraran els resultats obtinguts, i es veuran els temps que necessitarà per alimentar al microcontrolador.
Resumo:
Ao longo dos últimos anos a indústria microelectrónica tem evoluído no sentido de reduzir o consumo energético dos seus dispositivos no sentido de estes serem alimentados por fontes energéticas diversas, nomeadamente fontes renováveis. A crescente demanda por componentes energeticamente eficientes e pela miniaturização dos componentes eletrónicos exigem a conceção de fontes de alimentação com potência reduzida na ordem das dezenas de μW ás centenas de mW. Atualmente, com os crescentes avanços tecnológicos é possível obter componentes energéticamente eficientes e com tamanhos reduzidos capazes de colmatar as restrições energéticas das mais variadas aplicações. A utilização de fontes energia elétrica que tirão proveito da energia existente no meio onde se inserem os diversos dispositivos eletrónicos ou simplesmente para recarregar as baterias, apresenta-se como um dos principais objetivos a alcançar. Entre todas as energias renováveis, a energia fotovoltaica surge como umas das que proporciona um maior potencial. A sua disponibilidade global e os constantes desenvolvimentos tecnológicos no âmbito do fotovoltaico permitem o desenvolvimento de sistemas de alimentação com rendimento energético cada vez mais elevado. A presente dissertação tem como objetivo o estudo, a simulação e implementação de um conversor CC-CC, step-up, com algoritmo de controlo MPPT integrado designado por método de correlação de ripple (Ripple Correlation Control – RCC), para aplicações de baixa potência na ordem das dezenas de μW às centenas de mW. Desenvolveu-se um conversor CC-CC, autónomo, para carregamento de baterias com recurso a painéis fotovoltaicos, como fonte de energia, de forma contínua mesmo em situações de baixa luminosidade. Um circuito de gestão de energia devidamente dimensionado foi implementado com recurso a um algoritmo de procura do ponto de máxima potência (Maximum Power Point Tracking – MPPT). O objetivo desta implementação é extrair a máxima potência disponível da fonte de energia elétrica, neste caso o painel fotovoltaico, independentemente das condições meteorológicas e da potência requerida pela carga, sendo o excesso de energia redirecionado para a bateria. Nesta dissertação apresentam-se os resultados das simulações, assim como os resultados experimentais de todos os circuitos desenvolvidos de forma a validar todo o sistema implementado.
Resumo:
Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.
Resumo:
Control applications of switched mode power supplies have been widely investigated. The main objective ofresearch and development (R&D) in this field is always to find the most suitable control method to be implemented in various DC/DC converter topologies. Inother words, the goal is to select a control method capable of improving the efficiency of the converter, reducing the effect of disturbances (line and load variation), lessening the effect of EMI (electro magnetic interference), and beingless effected by component variation. The main objective of this research work is to study different control methods implemented in switched mode power supplies namely (PID control, hysteresis control, adaptive control, current programmed control, variable structure control (VSC), and sliding mode control (SMC). The advantages and drawbacks of each control method are given. Two control methods, the PID and the SMC are selected and their effects on DC/DC (Buck, Boost, and Buck-Boost) converters are examined. Matlab/SimulinkTM is used to implement PID control method in DC/DC Buck converter and SMC in DC/DC (Buck, and Buck Boost) converters. For the prototype, operational amplifiers (op-amps) are used to implement PID control in DC/DC Buck converter. For SMC op-amps are implemented in DC/DC Buck converter and dSPACETM is used to control the DC/DC Buck-Boost converter. The SMC can be applied to the DC/DC (Buck, Boost, and Buck-Boost) converters. A comparison of the effects of the PID control and the SMC on the DC/DC Buck converter response in steady state, under line variations, load variations, and different component variations is performed. Also the Conducted RF-Emissions between the PID and SMC DC/DC Buck Converter are compared. The thesis shows that, in comparison with the PID control, the SMC provides better steady-state response, better dynamic response, less EMI, inherent order reduction, robustness against system uncertainty disturbances, and an implicit stability proof. Giving a better steady-state and dynamic response, the SMC is implemented in a DC/DC resonant converter. The half-wave zero current switching (HWZCS) DC/DC Buck converter is selected as a converter topology. A general guideline to select the tank component values, needed for the designing of a HWZCS DC/DC Buck, is obtained. The implementation of the SMC to a HWZCS DC/DC Buck converter is analysed. The converter response is investigated in the steady-state region and in the dynamic region.
Resumo:
Over the recent years, development in mobile working machines has concentrated on reducing emissions owing to the tightening rules and needs to improve energy utilization and reduce power losses. This study focuses on energy utilization and regeneration in an electro-hydraulic forklift, which is a lifting equipment application. The study starts from the modelling and simulation of a hydraulic forklift. The energy regeneration from the potential energy of the load was studied. Also a flow-based electric motor speed control was suggested in this thesis instead of the throttle control method or the variable displacement pump control. Topics related to further development in the future are discussed. Finally, a summary and conclusions are presented.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.
Resumo:
Solar and wind power produce electricity irregularly. This irregular power production is problematic and therefore production can exceed the need. Thus sufficient energy storage solutions are needed. Currently there are some storages, such as flywheel, but they are quite short-term. Power-to-Gas (P2G) offers a solution to store energy as a synthetic natural gas. It also improves nation’s energy self-sufficiency. Power-to-Gas can be integrated to an industrial or a municipal facility to reduce production costs. In this master’s thesis the integration of Power-to-Gas technologies to wastewater treatment as a part of the VTT’s Neo-Carbon Energy project is studied. Power-to-Gas produces synthetic methane (SNG) from water and carbon dioxide with electricity. This SNG can be considered as stored energy. Basic wastewater treatment technologies and the production of biogas in the treatment plant are studied. The utilisation of biogas and SNG in heat and power production and in transportation is also studied. The integration of the P2G to wastewater treatment plant (WWTP) is examined mainly from economic view. First the mass flows of flowing materials are calculated and after that the economic impact based on the mass flows. The economic efficiency is evaluated with Net Present Value method. In this thesis it is also studied the overall profitability of the integration and the key economic factors.
Resumo:
The thesis interprets the caveat of Article 194(2) TFEU in order to assess the use of the Article as a legal basis for energy provisions provided by the European Union. The research subject is the Energy Title in the Treaty of the Functioning of the European Union and the possibilities of the application of the legal basis provided therein. The purpose is analysis of the possibilities for providing of provisions within the scope of the caveat found in Article 194(2) TFEU with special regard to the possibilities of providing renewable energy legislation. The purpose of the thesis is on one hand to provide an overview of the premises for providing of energy provisions in the EU, and on the other hand to analyse the Treaty text in order to determine the legal basis for energy provisions. The ultimate objective is to determine the correct legal basis for renewable energy provisions, aimed at the mitigation of climate change. According to Article 194(2) TFEU, the practice of the shared legislative powers in the field of energy are restricted by the retention of certain energy matters within the power of the Member States. The wording of the caveat containing the restrictions is open to interpretation and has been a subject of extensive discussion. Many scholars have argued that the caveat in Article 194(2) TFEU might obstruct decision-making in energy matters. This argument is contested, and the factual impact of the codification of the energy competences is analysed. The correct legal basis for energy provisions depends on the final interpretation of the text of the caveat and the level of significance of the effect of the measure. The use of Article 194(2) TFEU as a legal basis might not be the only option. There is a possibility that the legal bases within the Environmental Title might be used as legal bases for energy provisions in addition to Article 194(2) TFEU.
Resumo:
The thesis interprets the caveat of Article 194(2) TFEU in order to assess the use of the Article as a legal basis for energy provisions provided by the European Union. The research subject is the Energy Title in the Treaty of the Functioning of the European Union and the possibilities of the application of the legal basis provided therein. The purpose is analysis of the possibilities for providing of provisions within the scope of the caveat found in Article 194(2) TFEU with special regard to the possibilities of providing renewable energy legislation. The purpose of the thesis is on one hand to provide an overview of the premises for providing of energy provisions in the EU, and on the other hand to analyse the Treaty text in order to determine the legal basis for energy provisions. The ultimate objective is to determine the correct legal basis for renewable energy provisions, aimed at the mitigation of climate change. According to Article 194(2) TFEU, the practice of the shared legislative powers in the field of energy are restricted by the retention of certain energy matters within the power of the Member States. The wording of the caveat containing the restrictions is open to interpretation and has been a subject of extensive discussion. Many scholars have argued that the caveat in Article 194(2) TFEU might obstruct decision-making in energy matters. This argument is contested, and the factual impact of the codification of the energy competences is analysed. The correct legal basis for energy provisions depends on the final interpretation of the text of the caveat and the level of significance of the effect of the measure. The use of Article 194(2) TFEU as a legal basis might not be the only option. There is a possibility that the legal bases within the Environmental Title might be used as legal bases for energy provisions in addition to Article 194(2) TFEU.
Resumo:
Une compréhension profonde de la séparation de charge à l’hétérojonction de semi-con- ducteurs organiques est nécessaire pour le développement de diodes photovoltaïques organiques plus efficaces, ce qui serait une grande avancée pour répondre aux besoins mondiaux en énergie durable. L’objectif de cette thèse est de décrire les processus impliqués dans la séparation de charges à hétérojonctions de semi-conducteurs organiques, en prenant en exemple le cas particulier du PCDTBT: PCBM. Nous sondons les excitations d’interface à l’aide de méthodes spectroscopiques résolues en temps couvrant des échelles de temps de 100 femto- secondes à 1 milliseconde. Ces principales méthodes spectroscopiques sont la spectroscopie Raman stimulée femtoseconde, la fluorescence résolue en temps et l’absorption transitoire. Nos résultats montrent clairement que le transfert de charge du PCDTBT au PCBM a lieu avant que l’exciton ne soit relaxé et localisé, un fait expérimental irréconciliable avec la théorie de Marcus semi-classique. La paire de charges qui est créée se divise en deux catégories : les paires de polarons géminales non piégées et les paires profondément piégées. Les premiers se relaxent rapidement vers l’exciton à transfert de charge, qui se recombine radiativement avec une constante de temps de 1– 2 nanoseconde, alors que les seconds se relaxent sur de plus longues échelles de temps via l’effet tunnel. Notre modèle photophysique quantitatif démontre que 2 % de l’excitation créée ne peut jamais se dissocier en porteurs de charge libre, un chiffre qui est en accord avec les rendements élevés rapportés pour ce type de système.