882 resultados para physics beyond the SM
Resumo:
Wilson [16] introduced a general methodology to deal with monopolistic pricing in situations where customers have private information on their tastes (‘types’). It is based on the demand profile of customers: For each nonlinear tariff by the monopolist the demand at a given level of product (or quality) is the measure of customers’ types whose marginal utility is at least the marginal tariff (‘price’). When the customers’ marginal utility has a natural ordering (i.e., the Spence and Mirrlees Condition), such demand profile is very easy to perform. In this paper we will present a particular model with one-dimensional type where the Spence and Mirrlees condition (SMC) fails and the demand profile approach results in a suboptimal solution for the monopolist. Moreover, we will suggest a generalization of the demand profile procedure that improves the monopolist’s profit when the SMC does not hold.
Resumo:
We consider an exchange economy under incomplete financiaI markets with purely financiaI securities and finitely many agents. When portfolios are not constrained, Cass [4], Duffie [7] and Florenzano-Gourdel [12] proved that arbitrage-free security prices fully characterize equilibrium security prices. This result is based on a trick initiated by Cass [4] in which one unconstrained agent behaves as if he were in complete markets. This approach is unsatisfactory since it is asymmetric and no more valid when every agent is subject to frictions. We propose a new and symmetric approach to prove that arbitrage-free security prices still fully characterize equilibrium security prices in the more realistic situation where the financiaI market is constrained by convex restrictions, provided that financiaI markets are collectively frictionless.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Tissue reaction to Endométhasone sealer in root canal fillings short of or beyond the apical foramen
Resumo:
Objective: This study evaluated the response of periapical tissues to the endodontic sealer Endomethasone in root canal fillings short of or beyond the apical foramen. Material and Methods: Twenty root canals of premolars and incisors of 2 mongrel dogs were used. After coronal access and pulp extirpation, the canals were instrumented up to a size 55 K-file and the apical cemental barrier was penetrated with a size 15 K-file to obtain a main apical foramen, which was widened to a size 25 K-file. The canals were irrigated with saline at each change of file. The root canals were obturated either short of or beyond the apical foramen by the lateral condensation of gutta-percha and Endomethasone, originating 2 experimental groups: G1: Endomethasone/short of the apical foramen; G2: Endomethasone/beyond the apical foramen. The animals were killed by anesthetic overdose 90 days after endodontic treatment. The individual roots were obtained and serial histological sections were prepared for histomorphological analysis (H&E and Brown & Brenn techniques) under light microscopy. The following parameters were examined: closure of the apical foramen of the main root canal and apical opening of accessory canals, apical cementum resorption, intensity of the inflammatory infiltrate, presence of giant cells and thickness and organization of the apical periodontal ligament. Each parameter was scored 1 to 4, 1 being the best result and 4 the worst. Data were analyzed statistically by the Wilcoxon nonparametric tests (p=0.05). Results: Comparing the 2 groups, the best result (p<0.05) was obtained with root canal filling with Endomethasone short of the apical foramen but a chronic inflammatory infiltrate was present in all specimens. Conclusions: Limiting the filling material to the root canal space apically is important to determine the best treatment outcome when Endomethasone is used as sealer.
Resumo:
We show that the extension of the approximate custodial SU(2)(L+R) global symmetry to all the Yukawa interactions of the standard model Lagrangian implies the introduction of sterile right-handed neutrinos and the seesaw mechanism in this sector. In this framework, the observed quark and lepton masses may be interpreted as an effect of physics beyond the standard model. The mechanism used for breaking this symmetry in the Yukawa sector could be different from the one at work in the vector boson sector. We give three model independent examples of these mechanisms.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a simple toy model for quintessential inflation where a complex scalar field described by a Lagrangian with a U(1)(PQ) symmetry spontaneously broken at a high energy scale and explicitly broken by instanton effects at a much lower energy can account for both the early inflationary phase and the recent accelerated expansion of the Universe. The real part of the complex field plays the role of the in flaton whereas the imaginary part, the 'axion', is the quintessence field.
Resumo:
Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We explore regions of parameter space in a simple exponential model of the form V = V0 e-λ(Q/Mp) that are allowed by observational constraints. We find that the level of fine tuning in these models is not different from more sophisticated models of dark energy. We study a transient regime where the parameter λ has to be less than √3 and the fixed point ΩQ = 1 has not been reached. All values of the parameter λ that lead to this transient regime are permitted. We also point out that this model can accelerate the universe today even for λ > √2, leading to a halt of the present acceleration of the universe in the future thus avoiding the horizon problem. We conclude that this model can not be discarded by current observations. © SISSA/ISAS 2002.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy s=7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 fb-1. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this Letter. © 2012 CERN.