896 resultados para photovoltaic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a converter-per-panel approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cuk converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cuk converters are always at an efficiency or alternatively cost disadvantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new non-polar synthesis for lead sulfide (PbS) quantum-cubes in the conjugated polymer poly-2-methoxy, 5-(2-ethyl-hexyloxy-p-phenylenevinylene) MEH-PPV. The conducting polymer acts to template and control the quantum-cube growth. Transmission electron microscopy of the composites has shown a bimodal distribution of cube sizes between 5 and 15 nm is produced with broad optical absorption from 300 to 650 nm. Photoluminescence suggests electronic coupling between the cubes and the conducting polymer matrix. The synthesis and initial characterization are presented in this paper. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grid connected PhotoVoltaic (PV) inverters fall into three broad categories — Central, String and Module Integrated Converers (MICs). MICs offer any avantaes in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author — cascaded dc-dc MICs and bypass dc-dc MICs — integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150W 5A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows Zero Voltage Switching (ZVS) keeps losses under 1W for bi-directional power flows up to 15W between two adjacent 12V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.