915 resultados para photo period
Resumo:
We present a simple route for synthesis of Y2O3 for both photoluminescent (PL) and thermoluminescent (TL) applications. We show that by simply switching the fuel from ethylene di-amine tetracetic acid (EDTA) to its disodium derivative (Na-2-EDTA), we obtain a better photoluminescent material. On the other hand, use of EDTA aids in formation of Y2O3 which is a better thermoluminescent material. In both cases pure cubic nano-Y2O3 is obtained. For both the material systems, structural characterization, photoluminescence, thermoluminescence, and absorbance spectra are reported and analyzed. Use of EDTA results in nano Y2O3 with crystallite size similar to 10 nm. Crystallinity improves, and crystallite size is larger (similar to 30 nm) when Na-2-EDTA is used. TL response of Y2O3 nanophosphors prepared by both fuels is examined using UV radiation. Samples prepared with EDTA show well resolved glow curve at 140 degrees C, while samples prepared with Na-2-EDTA shows a glow curve at 155 degrees C. Effect of UV exposure time on TL characteristics is investigated. The TL kinetic parameters are also calculated using glow curve shape method. Results indicate that the TL behavior of both the samples follow a second order kinetic model. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An oxovanadium(IV) vitamin-B6 Schiff base complex, viz. VO(HL)( acdppz)] Cl, having (acridinyl) dipyridophenazine (acdppz) shows specific localization to endoplasmic reticulum (ER) and remarkable apoptotic photocytotoxicity in visible light (400-700 nm) in HeLa and MCF-7 cancer cells (IC50 < 0.6 mu M) while being non-toxic in the dark and to MCF-10A normal cells (IC50 > 40 mu M).
Resumo:
This paper reports optical, photo-acoustic and electrical switching investigations of GeS2 amorphous thin films of different thicknesses, deposited on glass substrates in vacuum. The Tauc parameter (B (1/2)) and Urbach energy (E (U)) have been determined from the transmittance spectra, to understand the changes in structural disorder; it is found that B (1/2) increases whereas E (U) decreases as the thickness of the films increases. Based on the results, it is suggested that bond re-arrangement, i.e. transformation from homopolar bonds to heteropolar bonds, takes place with increase in thickness. The thermal diffusivity values of GeS2 thin films also show the presence of a chemically ordered network in the GeS2 thin films. Further, it is found that these films exhibit memory-type electrical switching. The observed variation in the switching voltages has been understood on the basis of increase in chemical order.
Resumo:
A new series of luminescent 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles containing three ring systems, viz. methoxy pyridine, benzonitrile and alkoxy benzene with variable alkoxy chain length, with bent-core structures were synthesized as potential mesogens and characterized by spectral techniques. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (PXRD) measurements. The study reveals that compounds with shorter chain lengths i.e. m = 4] exclusively exhibit the nematic phase while compounds with longer chain lengths i.e. m = 6-14 (only even)] show predominantly the orthorhombic columnar phase. Single crystal X-ray analysis of 4-(2-(4-butyloxy/octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitriles reveals that they possess slightly non-planar unsymmetrical bent structures and their molecular packing consists of nonconventional H-bond interactions; it also explains the observed liquid crystalline phase. An optical study indicates that the title compounds are good blue emitting materials showing absorption and emission bands in the range 335-345 nm and 415-460 nm, respectively. An electrochemical study of 4-(2-(4-octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitrile shows a band gap of 1.89 eV with HOMO and LUMO energy levels of -5.06 and -3.17 eV, respectively. Also, density functional theory (DFT) calculations confirm its optimized geometry, electronic absorption and frontier molecular orbital distributions.
Resumo:
Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.
Resumo:
We report on the fabrication of polymethylmethacrylate (PMMA) nanogratings on silicon (Si) and glass substrates using electron beam lithography technique. Various aspects of proximity corrections using Monte Carlo simulation have been discussed. The fabrication process parameters such as proximity gap of exposure, exposure dosage and developing conditions have been optimized for high-density PMMA nanogratings structure on Si and glass substrates. Electron beam exposure is adjusted in such a way that PMMA acts as a negative tone resist and at the same time resolution loss due to proximity effect is minimum. Both reflection and transmission-type, nanometre period gratings have been fabricated and their diffraction characteristics are evaluated.
Resumo:
The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.
Resumo:
Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.
Resumo:
The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.
Resumo:
The thermally evaporated As20Sb20S60 amorphous film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.
Resumo:
In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.
Resumo:
The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].
Resumo:
Flexray is a high speed communication protocol designed for distributive control in automotive control applications. Control performance not only depends on the control algorithm but also on the scheduling constraints in communication. A balance between the control performance and communication constraints must required for the choice of the sampling rates of the control loops in a node. In this paper, an optimum sampling period of control loops to minimize the cost function, satisfying the scheduling constraints is obtained. An algorithm to obtain the delay in service of each task in a node of the control loop in the hyper period has been also developed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
An iron(III) salicylate having a dipicolylamine base (andpa) with a photoactive anthracenyl moiety is prepared, characterized, and studied for its photo-induced anticancer activity and cellular localization in HeLa and MCF-7 cells. Its phenyl analogue is structurally characterized by X-ray crystallography. The complex has a ternary structure in which the dipicolylamine ligand and salicylic acid in dianionic form (sal) display respective tridentate and bidentate mode of coordination in Fe(sal)(phdpa)Cl] (1). Complex Fe(sal)(andpa)Cl] (2) having a pendant anthracenyl moiety shows significant photocytotoxicity in visible light (400-700 nm) giving IC50 values of 8.6 +/- 0.7 and 3.4 +/- 0.9 mu M in HeLa and MCF-7 cells, while being essentially nontoxic in the dark (IC50 > 100 mu M). The complex shows cytosolic localization in the cancer cells. Formation of hydroxyl radicals ((OH)-O-center dot) as the reactive oxygen species is evidenced from the pUC19 DNA photocleavage studies. (C) 2015 Elsevier Ltd. All rights reserved.