906 resultados para peptide binders


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of Tyr-His vs. Cys-His interacting pairs to the scaffold stability of (D)Pro-(L)Pro nucleated peptide beta-hairpins has been examined. We present direct evidence for the superiority of the Cys-His pairs, mediated by sulphur-imidazole interactions, as added stabilizing agents of the beta-hairpin scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational diversity or shapeshifting in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel peptide containing a single disulfide bond, CIWPWC (Vi804), has been isolated and characterised from the venom of the marine cone snail, Conus virgo. A precursor polypeptide sequence derived from complementary DNA, corresponding to the M-superfamily conotoxins, has been identified. The identity of the synthetic and natural peptide sequence has been established. A detailed analysis of the conformation in solution is reported for Vi804 and a synthetic analogue, (CIWPWC)-W-D ((D)W3-Vi804), in order to establish the structure of the novel WPW motif, which occurs in the context of a 20-membered macrocyclic disulfide. Vi804 exists exclusively in the cis W3P4 conformer in water and methanol, whereas (D)W3-Vi804 occurs exclusively as the trans conformer. NMR spectra revealed a W3P4 typeVI turn in Vi804 and a typeII turn in the analogue peptide, (D)W3-Vi804. The extremely high-field chemical shifts of the proline ring protons, together with specific nuclear Overhauser effects, are used to establish a conformation in which the proline ring is sandwiched between the flanking Trp residues, which emphasises a stabilising role for the aromatic-proline interactions, mediated predominantly by dispersion forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first synthesis of 1,3-thiazine fused peptide mimics is described from N-(3-hydroxypropyl)thioamides under MsCl/NEt3 conditions. The method is amenable to oligopeptidomimics with polar and apolar side chains. Substantial epimerization occurs at chiral C(2) exo methines in non-Pro fused mimics even under neutral conditions. H-1 NMR and crystal structure analyses indicate that the Thi analogues primarily associate with each other through intermolecular hydrogen bonds, involving the nitrogen of 1,3-thiazine and the N-H of the fused residue, which may be the basis for enamination-racemization process in these peptide mimics. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer has always been a dreadful disease and continues to attract extensive research investigations. Various targets have been identified to restrain cancer. Among these DNA happens to be the most explored one. A wide variety of small molecules, often referred to as `ligands', has been synthesized to target numerous structural features of DNA. The sole purpose of such molecular design has been to interfere with the transcriptional machinery in order to drive the cancer cell toward apoptosis. The mode of action of the DNA targeting ligands focuses either on the sequence-specificity by groove binding and strand cleavage, or by identifying the morphologically distinct higher order structures like that of the G-quadruplex DNA. However, in spite of the extensive research, only a tiny fraction of the molecules have been able to reach clinical trials and only a handful are used in chemotherapy. This review attempts to record the journey of the DNA binding small molecules from its inception to cancer therapy via various modifications at the molecular level. Nevertheless, factors like limited bioavailability, severe toxicities, unfavorable pharmacokinetics etc. still prove to be the major impediments in the field which warrant considerable scope for further research investigations. (C) 2014 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In composite solid propellants, the fuel and oxidizer are held together by a polymer binder. Among the different types of polymeric binders used in solid propellants, hydroxyl terminated polybutadiene (HTPB) is considered as the most versatile. HTPB is conventionally cured using isocyanates to form polyurethanes. However, the incompatibility of isocyanates with energetic oxidizers such as ammonium dinitramide and hydrazinium nitroformate, the short pot life of the propellant slurry, and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of HTPB based propellant. With an aim of resolving these problems, HTPB was chemically transformed to azidoethoxy carbonyl amine terminated polybutadiene and propargyloxy carbonyl amine terminated polybutadiene by adopting appropriate synthesis strategies and characterizing them by spectroscopic and chromatographic techniques. This is the first report on 1,3-dipolar addition reaction involving azide and alkyne end groups for cross-linking HTPB. The blend of these two polymers underwent curing under mild temperature (60 degrees C) conditions through 1,3-dipolar cycloaddition reaction resulting in triazoletriazoline networks. The curing parameters were studied using differential scanning calorimetry. The kinetic parameter, viz., activation energy, was computed to be 107.6 kJ/mol, the preexponential factor was 2.79 x 10(12) s-(1), and the rate constant at 60 degrees C was computed to be 3.64 x 10-(5) s-(1). The cure profile at a given temperature was predicted using the kinetic parameters. Rheological studies revealed that the gel time for curing through the 1,3-dipolar addition is 280 min compared to 120 min for curing through the urethane route. The mechanical properties of the resultant cured polybutadiene network were superior to those of polyurethanes. The cured triazolinetriazole polymer network exhibited biphasic morphology with two glass transitions (T-g) at -56 and 42 degrees C in contrast to the polyurethane which exhibited a single transition at -60 degrees C. This was corroborated by associated morphological changes observed by scanning probe microscopy. The propellant processed using this binder has the advantages of improved pot life as indicated by the end of the mix viscosity which is 165 Pas as compared with 352 Pas for the polyurethane system along with a slow build- up rate. The mechanical properties of the propellant are superior to polyurethane with an improvement of 14% in tensile strength, 22% enhancement in elongation at break, and 12% in modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve >0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary structure formation in oligopeptides can be induced by short nucleating segments with a high propensity to form hydrogen bonded turn conformations. Type I/III turns facilitate helical folding while type II'/I' turns favour hairpin formation. This principle is experimentally verified by studies of two designed dodecapeptides, Boc-Val-Phe-Leu-Phe-Val-Aib-Aib-Val-Phe-Leu-Phe-Val-OMe 1 and Boc-Val-Phe-Leu-Phe-Val- (D) Pro- (L) Pro-Val-Phe-Leu-Phe-Val-OMe 2. The N- and C-terminal flanking pentapeptide sequences in both cases are identical. Peptide 1 adopts a largely alpha-helical conformation in crystals, with a small 3(10) helical segment at the N-terminus. The overall helical fold is maintained in methanol solution as evidenced by NMR studies. Peptide 2 adopts an antiparallel beta-hairpin conformation stabilized by 6 interstrand hydrogen bonds. Key nuclear Overhauser effects (NOEs) provide evidence for the antiparallel beta-hairpin structure. Aromatic proton chemical shifts provide a clear distinction between the conformation of peptides 1 (helical) and 2 (beta-hairpin). The proximity of facing aromatic residues positioned at non-hydrogen bonding positions in the hairpin results in extensively ring current shifted proton resonances in peptide 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptide N-benzyloxycarbonyl-L-valyl-L-tyrosine methyl ester or NCbz-Val-Tyr-OMe (where NCbz is N-benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra- and intermolecular aromatic - interactions which stabilize the conformation and packing in the crystal structure, in addition to NH...O and OH...O hydrogen bonds. The aromatic - interactions include parallel-displaced, perpendicular T-shaped, perpendicular L-shaped and inclined orientations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal relaxation due to cross-correlation between dipolar ((HN-1H alpha)-H-1) and amide-proton chemical shift anisotropy (H-1(N) CSA) has been measured in a model tripeptide Piv-(L)Pro-(L)Pro-(L)Phe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins. (C) 2015 Elsevier Ltd. All rights reserved.