911 resultados para pediatric dentistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goblet cell hyperplasia (GCH) and decreased ciliated cells are characteristic of asthma. We examined the effects of IL-13 (2 and 20 ng/mL) on in vitro mucociliary differentiation in pediatric bronchial epithelial cells (PBECs) of normal PBEC [PBEC(N)] and asthmatic PBEC [PBEC(A)] children. Markers of differentiation, real-time PCR for MUC5AC, MUC5AC ELISA, and transepithelial electrical resistance (TEER) were assessed. Stimulation with 20 ng/mL IL-13 in PBEC(N) resulted in GCH [20 ng/mL IL-13: mean, 33.8% (SD, 7.2) versus unstimulated: mean, 18.9% (SD, 5.0); p < 0.0001] and decreased ciliated cell number [20 ng/mL IL-13: mean, 8% (SD, 5.6) versus unstimulated: mean, 22.7% (SD,7.6); p < 0.01]. PBEC(N) stimulated with 20 ng/mL IL-13 resulted in >5-fold (SD, 3.2) increase in MUC5AC mRNA expression, p < 0.001, compared with unstimulated PBEC(N). In PBEC(A), GCH was also seen [20 ng/mL IL-13: mean, 44.7% (SD, 16.4) versus unstimulated: mean, 30.4% (SD, 13.9); p < 0.05] with a decreased ciliated cell number [20 ng/mL IL-13: mean, 8.8% (SD, 7.5) versus unstimulated: mean, 16.3% (SD, 4.2); p < 0.001]. We also observed an increase in MUC5AC mRNA expression with 20 ng/mL IL-13 in PBEC(A), p < 0.05. IL-13 drives PBEC(N) toward an asthmatic phenotype and worsens the phenotype in PBEC(A) with reduced ciliated cell numbers and increased goblet cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim in this study was to determine the outcomes of boost stereotactic radiosurgery, specifically Gamma Knife surgery (GKS), for recurrent primitive neuroectodermal tumors (PNETs) in children in whom initial multimodality management had failed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.