897 resultados para peace movements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many common fishes associated with Caribbean coral reef ecosystems use resources from more than 1 patch type during routine daily foraging activities. Few studies have provided direct evidence of connectivity across seascapes, and the importance of benthic seascape structure on movement behavior is poorly known. To address this knowledge gap, we coupled hydro-acoustic technology to track fish with seafloor mapping and pattern analysis techniques from landscape ecology to quantify seascape structure. Bluestriped grunts Haemulon sciurus and schoolmaster snapper Lutjanus apodus were tracked over 24 h periods using boat-based acoustic telemetry. Movement pathways, and day and night activity spaces were mapped using geographical information system (GIS) tools, and seafloor structure within activity spaces was mapped from high-resolution aerial photography and quantified using spatial pattern metrics. For both fish species, night activity spaces were significantly larger than day activity spaces. Fish exhibited a daytime preference for seascapes with aggregate coral reef and colonized bedrock, then shifted to night activity spaces with lower complexity soft sediment including sand, seagrass, and scattered coral/rock. Movement path complexity was negatively correlated with seascape complexity. This demonstrates direct connectivity across multiple patch types and represents the first study to apply quantitative landscape ecology techniques to examine the movement ecology of marine fish. The spatially explicit approach facilitates understanding to the linkages between biological processes and the heterogeneity of the landscape. Such studies are essential for identifying ecologically relevant spatial scales, delineating essential fish habitat and designing marine protected areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined movement patterns of sportfish that were tagged in the northern Indian River Lagoon, Florida, between 1990 and 1999 to assess the degree of fish exchange between an estuarine no-take zone (NTZ) and surrounding waters. The tagged f ish were from seven species: red drum (Sciaenops ocellatus); black drum (Pogonias cromis); sheepshead (Archosargus probatocephalus); common snook (Centropomus undecimalis); spotted seatrout (Cynoscion nebulosus); bull shark (Carcharhinus leucas); and crevalle jack (Caranx hippos). A total of 403 tagged fish were recaptured during the study period, including 65 individuals that emigrated from the NTZ and 16 individuals that immigrated into the NTZ from surrounding waters of the lagoon. Migration distances between the original tagging location and the sites where emigrating fish were recaptured were from 0 to 150 km, and these migration distances appeared to be influenced by the proximity of the NTZ to spawning areas or other habitats that are important to specific life-history stages of individual species. Fish that immigrated into the NTZ moved distances ranging from approximately 10 to 75 km. Recapture rates for sportfish species that migrated across the NTZ boundary suggested that more individuals may move into the protected habitats than move out. These data demonstrated that although this estuarine no-take reserve can protect species from fishing, it may also serve to extract exploitable individuals from surrounding fisheries; therefore, if the no-take reserve does function to replenish surrounding fisheries, then increased egg production and larval export may be more important mechanisms of replenishment than the spillover of excess adults from the reserve into fishable areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In August and September of 1997 and 1998, we used SCUBA techniques to surgically implant Vemco V16 series acoustic transmitters in 6 greenspotted rockfish (Sebastes chlorostictus) and 16 bocaccio (S. paucispinis) on the flank of Soquel Canyon in Monterey Bay, California. Fish were captured at depths of 100–200 m and reeled up to a depth of approximately 20 m, where a team of SCUBA divers anesthetized and surgically implanted acoustic transmitters in them. Tagged fish were released on the seafloor at the location of catch. An array of recording receivers on the seafloor enabled the tracking of horizontal and vertical fish movements for a three-month period. Greenspotted rockfish tagged in 1997 exhibited almost no vertical movement and showed limited horizontal movement. Two of these tagged fish spent more than 90% of the time in a 0.58-km2 area. Three other tagged greenspotted rockfish spent more than 60% of the time in a 1.6-km2 area but displayed frequent horizontal movements of at least 3 km. Bocaccio exhibited somewhat greater movements. Of the 16 bocaccio tagged in 1998, 10 spent less than 10% of the time in the approximately 12-km2 study area. One fish stayed in the study area for about 50% of the study time. Signals from the remaining 5 fish were recorded in the study area the entire time. Bocaccio frequently moved vertically 10–20 m and occasionally displayed vertical movements of 100 m or greater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical and horizontal movements of southern bluefin tuna (SBT), Thunnus maccoyii, in the Great Australian Bight were investigated by ultrasonic telemetry. Between 1992 and 1994, sixteen tuna were tracked for up to 49 h with depth or combined temperature-depth transmitting tags. The average swimming speeds (measured over the ground) over entire tracks ranged from 0.5 to 1.4 m/s or 0.5 to 1.4 body lengths/s. The highest sustained swimming speed recorded was 2.5 m/s for 18 hours. Horizontal movements were often associated with topographical features such as lumps, reefs, islands and the shelf break. They spent long periods of time at the surface during the day (nearly 30%), which would facilitate abundance estimation by aerial survey. At night, they tended to remain just below the surface, but many remained in the upper 10 m throughout the night. SBT were often observed at the thermocline interface or at the surface while travelling. A characteristic feature of many tracks was sudden dives before dawn and after sunset during twilight, followed by a gradual return to their original depth. It is suggested that this is a behavior evolved to locate the scattering layer and its associated prey when SBT are in waters of sufficient depth. SBT maintained a difference between stomach and ambient temperature of up to 9°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ninety-six bigeye tuna (88– 134 cm fork length) were caught and released with implanted archival (electronic data storage) tags near fish-aggregating devices (FADs) in the equatorial eastern Pacific Ocean (EPO) during April 2000. Twenty-nine fish were recaptured, and the data from twenty-seven tags were successfully downloaded and processed. Time at liberty ranged from 8 to 446 days, and data for 23 fish at liberty for 30 days or more are presented. The accuracy in geolocation estimates, derived from the light level data, is about 2 degrees in latitude and 0.5 degrees in longitude in this region. The movement paths derived from the filtered geolocation estimates indicated that none of the fish traveled west of 110°W during the period between release and recapture. The null hypothesis that the movement path is random was rejected in 17 of the 22 statistical tests of the observed movement paths. The estimated mean velocity was 117 km/d. The fish exhibited occasional deep-diving behavior, and some dives exceeded 1000 m where temperatures were less than 3°C. Evaluations of timed depth records, resulted in the discrimination of three distinct behaviors: 54.3% of all days were classified as unassociated (with a floating object) type-1 behavior, 27.7% as unassociated type-2 behavior, and 18.7% as behavior associated with a floating object. The mean residence time at floating objects was 3.1 d. Data sets separated into day and night were used to evaluate diel differences in behavior and habitat selection. When the fish were exhibiting unassociated type-1 behavior (diel vertical migrations), they were mostly at depths of less than 50 m (within the mixed layer) throughout the night, and during the day between 200 and 300 m and 13° and 14°C. They shifted their average depths in conjunction with dawn and dusk events, presumably tracking the deep-scattering layer as a foraging strategy. There were also observed changes in the average nighttime depth distributions of the fish in relation to moon phase.