977 resultados para patent(s)
Resumo:
BACKGROUND: Patent foramen ovale (PFO) has been linked to migraine, and several retrospective studies reported an improvement in migraine prevalence or frequency after PFO closure for other reasons, mostly for secondary prevention of paradoxical embolism or following diving accidents. We investigated the outcome of patients undergoing PFO closure solely for migraine headaches refractory to medical treatment. METHODS: Seventeen patients (age 44 +/- 12 years; 76% female; one atrial septal aneurysm) underwent percutaneous PFO closure using the Amplatzer PFO Occluder (AGA Medical Corporation, Golden Valley, MN). An 18-mm device was used in two patients, a 25-mm device in 13, and a 35-mm device in two. The interventions were solely guided by fluoroscopy, without intraprocedural echocardiography. RESULTS: All implantation procedures were successful. There were no peri-procedural complications. Contrast transesophageal echocardiography after Valsalva maneuver at 6 months showed complete PFO closure in 16 patients (94%), whereas a minimal residual shunt persisted in one (6%). During 2.7 +/- 1.5 years of follow-up, no deaths and no embolic events occurred. After PFO closure, migraine headaches disappeared in four patients (24%), and improved in eight additional patients (47%). Three patients (18%) reported a decrease of their headaches by 75%, three patients (18%) a decrease of 50%, and two patients (12%) a decrease of 25%, while headaches remained unchanged in five patients (29%). No patient experienced worsening headaches. Moreover, the prevalence of migraine with aura decreased from 82 to 24% (P = 0.002). CONCLUSIONS: These results suggest that percutaneous PFO closure durably alters the spontaneous course of shunt associated migraine.
Resumo:
BACKGROUND: Percutaneous closure of patent foramen ovale (PFO) is generally performed using intra-procedural guidance by transoesophageal (TEE) or intracardiac (ICE) echocardiography. While TEE requires sedation or general anaesthesia, ICE is costly and adds incremental risk, and both imaging modalities lengthen the procedure. METHODS: A total of 825 consecutive patients (age 51 +/- 13 years; 58% male) underwent percutaneous PFO closure solely under fluoroscopic guidance, without intra-procedural echocardiography. The indications for PFO closure were presumed paradoxical embolism in 698 patients (95% cerebral, 5% other locations), an embolic event with concurrent aetiologies in 47, diving in 51, migraine headaches in 13, and other reasons in 16. An atrial septal aneurysm was associated with the PFO in 242 patients (29%). RESULTS: Permanent device implantation failed in two patients (0.2%). There were 18 procedural complications (2.2%), including embolization of the device or parts of it in five patients with successful percutaneous removal in all cases, air embolism with transient symptoms in four patients, pericardial tamponade requiring pericardiocentesis in one patient, a transient ischaemic attack with visual symptoms in one patient, and vascular access site problems in seven patients. There were no long-term sequelae. Contrast TEE at six months showed complete abolition of right-to-left shunt via PFO in 88% of patients, whereas a minimal, moderate or large residual shunt persisted in 7%, 3%, and 2%, respectively. CONCLUSIONS: This study confirms the safety and feasibility of percutaneous PFO closure without intra-procedural echocardiographic guidance in a large cohort of consecutive patients.
Resumo:
BACKGROUND: Sex differences in patients with patent foramen ovale (PFO) and cryptogenic stroke have not been systematically analyzed. We aimed to determine sex influences on demographics, vascular risk factors, clinical manifestations, stroke location, and clinical outcome. METHODS: One thousand two hundred eighty-eight consecutive patients with ischemic stroke or transient ischemic attack (TIA) were admitted to a single stroke center. All patients underwent a complete stroke workup including clinical examination, standard blood tests, cerebral and vascular imaging, transesophageal echocardiography, and 24-hour electrocardiography. In 500 patients, no definite etiology could be established (cryptogenic stroke/TIA). Of them, 167 patients (107 men and 60 women, mean age 52 +/- 13 years) had an PFO. RESULTS: The prevalence of PFO in patients with cryptogenic stroke or TIA was higher in men than in women (38% vs 28%, P = .014). Stroke severity and the prevalence of risk factors did not differ between the 2 sexes. There was an independent association between male sex and stroke location in the posterior cerebral circulation (OR 3.0, 95% CI 1.4-6.5, P = .006). Men and women did not differ in respect to PFO grade, prevalence of right-to-left shunt at rest, or coexistence of atrial septal aneurysm. Clinical outcome at 3 months was similar in both sexes. CONCLUSION: Patent foramen ovale was more prevalent in men than in women with cryptogenic stroke. There were no sex influences on age, risk factors, echocardiographic characteristics of PFO, or clinical outcome. Male sex was independently associated with stroke in the posterior cerebral circulation.
Resumo:
The goal of this study was to assess the feasibility, safety and success of a system which uses radiofrequency energy (RFE) rather than a device for percutaneous closure of patent foramen ovale (PFO). METHODS: Sixteen patients (10 men, 6 women, mean age 50 years) were included in the study. All of them had a proven PFO with documented right-to-left shunt (RLS) after Valsalva manoeuvre (VM) during transoesophageal echocardiography (TEE). The patients had an average PFO diameter of 6 +/- 2 mm at TEE and an average of 23 +/- 4 microembolic signals (MES) in power M-mode transcranial Doppler sonography (pm-TCD), measured over the middle cerebral artery. An atrial septal aneurysm (ASA) was present in 7 patients (44%). Balloon measurement, performed in all patients, revealed a stretched PFO diameter of 8 +/- 3 mm. In 2 patients (stretched diameter 11 and 14 mm respectively, both with ASA >10 mm), radiofrequency was not applied (PFO too large) and the PFO was closed with an Amplatzer PFO occluder instead. A 6-month follow-up TEE was performed in all patients. RESULTS: There were no serious adverse events during the procedure or at follow-up (12 months average). TEE 6 months after the first RFE procedure showed complete closure of the PFO in 50% of the patients (7/14). Closure appeared to be influenced by PFO diameter, complete closure being achieved in 89% (7/8) with a balloon-stretched diameter < or =7 mm but in none of the patients >7 mm. Only one of the complete closure patients had an ASA. Of the remainder, 4 (29%) had an ASA. Although the PFO was not completely closed in this group, some reduction in the diameter of the PFO and in MES was documented by TEE and pm-TCD with VM. Five of the 7 residual shunt patients received an Amplatzer PFO occluder. Except for one patient with a minimal residual shunt, all showed complete closure of PFO at 6-month follow-up TEE and pm-TCD with VM. The other two refused a closure device. CONCLUSIONS: The results confirm that radiofrequency closure of the PFO is safe albeit less efficacious and more complex than device closure. The technique in its current state should not be attempted in patients with a balloon-stretched PFO diameter >7 mm and an ASA.
Nickel allergy and device closure of the patent foramen ovale, now that we were told should we care?
Resumo:
OBJECTIVES: We sought to assess the safety and clinical efficacy of patent foramen ovale (PFO) closure under fluoroscopic guidance only, without intraprocedural echocardiography. BACKGROUND: Percutaneous PFO closure has been shown to be safe and feasible using several devices. It is generally performed using simultaneously fluoroscopic and transesophageal or intracardiac echocardiographic guidance. Transesophageal echocardiography requires sedation or general anesthesia and intubation to avoid aspiration. Intracardiac echocardiography is costly and has inherent risks. Both lengthen the procedure. The Amplatzer PFO Occluder (AGA Medical Corporation, Golden Valley, Minnesota) can be safely implanted without echocardiographic guidance. METHODS: A total of 620 patients (51 +/- 12 years; 66% male) underwent PFO closure using the Amplatzer PFO Occluder for secondary prevention of presumed paradoxical embolism. Based on size and mobility of the PFO and the interatrial septum, an 18-mm device was used in 50 patients, a 25-mm device in 492, and a 35-mm device in 78. RESULTS: All procedures were successful, with 5 procedural complications (0.8%): 4 arteriovenous fistulae requiring elective surgical correction, and 1 transient ischemic attack. Contrast transesophageal echocardiography at 6 months showed complete closure in 91% of patients, whereas a minimal, moderate, or large residual shunt persisted in 6%, 2%, and 1%, respectively. During a mean follow-up period of 3.0 +/- 1.9 years (median: 2.6 years; total patient-years: 1,871), 5 ischemic strokes, 8 transient ischemic attacks, and no peripheral emboli were reported. Freedom from recurrent ischemic stroke, transient ischemic attack, or peripheral embolism was 99% at 1 year, 99% at 2 years, and 97% at 5 years. CONCLUSIONS: The Amplatzer PFO Occluder affords excellent safety and long-term clinical efficacy of percutaneous PFO closure without intraprocedural echocardiography.
Resumo:
We have conducted a systematic review of air embolism complications of neurosurgery in the sitting position and patent foramen ovale (PFO) closure. It assesses the risk and benefit of PFO closure before neurosurgery in the sitting position. The databases Medline, Embase, and Cochrane Controlled Trial Register were systematically searched from inception to November 2007 for keywords in both topics separately. In total, 4806 patients were considered for neurosurgery in sitting position and 5416 patients underwent percutaneous PFO closure. The overall rate of venous air embolism during neurosurgery in sitting position was 39% for posterior fossa surgery and 12% for cervical surgery. The rate of clinical and transoesophageal echocardiography detected paradoxical air embolism was reported between 0% and 14%. The overall success rate for PFO closure using new and the most common closure devices was reported 99%, whereas the average risk of major complications is <1%. On the basis of our systematic review, we recommend screening for PFO and considering closure in cases in which the sitting position is the preferred neurosurgical approach. Our proposed management including the time of PFO closure according to available data is presented. However, the conclusions from our systematic review may be limited due to the lack of level A evidence and from using data from observational cohort studies. Thus, definite evidence-based recommendations require prospective evaluation of the issue in well-designed studies.
Resumo:
AIMS: Currently available devices for transcatheter closure of patent foramen ovale (PFO) which rely on a permanent implant have limitations, including late complications. The study objective was to evaluate the safety, feasibility, and effectiveness of the PFx Closure System, the first transcatheter technique for PFO closure without an implantable device. METHODS AND RESULTS: A prospective study of 144 patients was conducted at nine clinical sites from October 2005 through August 2007. All patients had a history of cryptogenic stroke, transient ischemic attack, migraines, or decompression illness. The mean balloon stretched diameter of the PFO was 7.9 +/- 2.5 mm. Technical success (successful application of radiofrequency energy) was achieved in 130 patients. One patient required a transfusion as a result of blood loss during the procedure. There were no other major procedural complications. There were no recurrent strokes, deaths, conduction abnormalities, or perforations following the procedure. At a mean follow-up of 6 months, successful closure was achieved in 79 patients (55%). In PFOs with balloon sized or stretched diameters less than 8 mm, the closure rate was 72% (53/74). CONCLUSION: This study demonstrates that transcatheter closure of a PFO without a permanent implant is technically feasible and safe. Further technique and device modifications are required to achieve higher closure rates.
Cryptogenic stroke and patent foramen ovale: matched cohorts in observational studies remain matched
Resumo:
Despite the growing recognition of the patent foramen ovale (PFO), particularly when associated with an atrial septal aneurysm, as risk factor for several disease manifestations (above all paradoxical embolism), the optimal treatment strategy for symptomatic patients remains controversial. Percutaneous PFO closure is a minimally invasive procedure which can be performed with high success and low morbidity. For secondary prevention of recurrent embolic events, it appears to be clinically at least as effective as oral anticoagulation. Ventricular septal defects (VSDs) are the most common congenital heart defects. Percutaneous VSD closure is more intricate than PFO closure. It is associated with a significant risk of both peri-interventional and mid-term complications. In suitable patients with congenital VSD, device closure may well be the preferred treatment both for muscular or perimembranous VSDs and for residual defects after surgical VSD closure. The risk of complete atrioventricular conduction block remains a concern in the perimembranous group. The history, technique and clinical role of percutaneous PFO and VSD closure are discussed, with emphasis on current problems and future developments.
Resumo:
The patent nasopalatine duct is a rare anomaly in the anterior maxilla. During the early fetal period, a bilateral and epithelium-lined duct is formed within the primary palatal process as an oro-nasal communication. However, the duct obliterates and degenerates before birth. A persisting patent or through-and-through nasoplatine duct is therefore considered a developmental anomaly. A patent nasopalatine duct normally presents as one (or two) tiny openings lateral or posterior to the incisive papilla. In such a case, the ducts can be partially or completely probed with gutta-percha points with subsequent radiographic imaging. The patients report strange sensations such as squeaking noise, palatal drainage, nasal regurgitation, or airway communication between nasal and oral cavities; however, patients rarely complain about pain. About 40 cases have been documented in the literature. We describe two patients who have been referred to our department for evaluation of "sinus tracts" in the anterior palate. Since a patent nasopalatine duct can become a diagnostic pitfall, a thorough inspection of the mucosa around the incisive papilla is essential to avoid unnecessary endodontic or surgical interventions in the area of the central maxillary incisors.