998 resultados para oxygen derivative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductivity in LnBa2Cu3O7 − δ with Ln = Nd, Eu, Gdand Dy has been investigated as a function of δ, closely following the accompanying changes in crystal structure. Orthorhombic GdBa2Cu3O7 − δ and DyBa2Cu3O7 − δ show a Tc of ≈ 90 K up to δ = 0.2 and a lower Tc plateau (40–50 K) in the δ range 02 to 0.4, similar to that found in YBa2Cu3O7 − δ. The orthorhombic structure II in the lower Tc regions is different from the structure I in the 90 K Tc (low δ) region. The unit cell parameters of the orthorhombic I structure in the high Tc region bear the relationship of a a ≠ b not, vert, similar c/3. This relationship is not seen in the low Tc plateau. The low Tc plateau region does not distinctly manifest itself in NdBa2Cu3O7 − δ just as in LaBa2Cu3O7 − δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core-level spectroscopic studies show the presence of holes on oxygen in LaNiO3 and LiNiO2 Nickel in these oxides seems to be essentially in the 2+ state instead of the 3+ state-where it would formally be expected to be on the basis of the stoichiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical methods for optimizing the morphology of oxide-based, bifunctional oxygen electrodes for use in rechargeable metal/air batteries are examined with regard to binder composition, compaction time, and compaction load. Results show that LaNiO3 with PTFE binder in a nickel mesh envelope provides a satisfactory electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine first-principles calculations with EXAFS studies to investigate the origin of high oxygen storage capacity in ceria-zirconia solid solution, prepared by solution combustion method. We find that nanocrystalline Ce0.5Zr0.5O2 can be reduced to Ce0.5Zr0.5O1.57 by H-2 upto 850 degrees C with an OSC of 65 cc/gm which is extremely high. Calculated local atomic-scale structure reveals the presence of long and short bonds resulting in four-fold coordination of the cations, confirmed by the EXAFS studies. Bond valence analysis of the microscopic structure and energetics is used to evaluate the strength of binding of different oxide ions and vacancies. We find the presence of strongly and weakly bound oxygens, of which the latter are responsible for the higher oxygen storage capacity in the mixed oxides than in the pure CeO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial structural alteration of RNAase A due to acid denaturation (0.5 N HCl, 30 degrees C) that accompanies deamidation (without altering enzymic activity) has been dectected by spectrophotometric titration, fluorescence and ORD/CD measurements. It is shown that acid treated RNAase A has an altered conformation at neutral pH, 25 degrees C. This is characterized by the increased accessibility of buried tyrosine residue(s) towards the solvent. The most altered conformation of RNAase A is found in the 10 h acid-treated derivative. This has about 1.5 additional exposed tyrosine residues and a lesser amount of secondary structure than RNAase A. All three methods (titration, fluorescence and CD) established that the structural transition of RNAase A is biphasic. The first phase occurs within 1 h and the resulting subtle conformational change is constant up to 7 h. Following this, after the release of 0.55 mol of ammonia, the major conformational change begins. The altered conformation of the acid-denatured RNAase A could be reversed completely to the native state through a conformational change induced by substrate analogs like 2'- or 3'-CMP. Thus the monodeamidated derivative isolated from the acid-denatured RNAase A by phosphate is very similar to RNAase A in over-all conformation. The results suggest the possibility of flexibility in the RNAase A molecule that does not affect its catalytic activity, as probed through the tyrosine residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density measurements on large single-crystal specimens of La2NiO4+δ and Pr2NiO4+δ show that oxygen nonstoichiometry arises from the presence of excess lattice oxygen. X-ray photoelectron spectra as well as X-ray absorption edge studies provide no evidence for the existence of Ni3+ in these oxygen-excess nickelates under the conditions of the measurements. Transmission electron microscopy has revealed a novel type of exsolution process of the stoichiometric phase out of nonstoichiometric La2NiO4 during heating in CO2 at 870 K for 3 h. An interpretation of the results in terms of the existence of peroxide species within the conducting layers is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetric curves of the superconducting samples (0.0 ≤ δ left angle bracket0.5) of YBa2Cu3O7−δ are shown to be characteristically different from those of the non-superconducting samples (δreverse similar, equals0.5–1.0). The variation of Tc (from resistivity measurements) with δ confirms for a change from Image to Image Bands found in bright or dark field electron micrographs are shown to arise for different orientations of the [CuO2]∞ planes, causing oxygen enrichment in the boundaries. A new defect with missing Y-rows is found in the images of Y1−xBa2Cu3O7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemin catalyses the oxidation of dithiothreitol. One mole of oxygen is consumed for every 2 moles of dithiothreitol oxidized and the product is shown by spectral studies to be the intramolecular disulphide. The reaction shows a specificity for dithiol and for free heme moieties. Hemin molecules exhibit cooperativity in oxygen reduction. Oxygen radicals do not seem to be involved. H2O2 is not required for this oxidation of dithiothreitol and does not appear to be an intermediate in the reduction of O2 to H2O. However, an independent minor reaction involving a 2-electron transfer with the formation of H2O2 also occurs. These studies on the hemin-catalyzed oxidation of dithiothreitol provide a chemical model for a direct 4-electron reduction of O2 to H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propyloxy-substituted piperidine in solution adopts a conformation in which its alkoxy group is equatorially positioned Surprisingly, two conformers of it that do not interconvert in the NMR time scale at room temperature have been found within an octa-acid capsule The serendipitous finding of the axial conformer of propyloxy-substituted piperidine within a supramolecular capsule highlights the value of confined spaces in physical organic chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu–O distance.v max increases at an impressive rate of sim20 cm–1 per 0.01 Å when the Cu–O distance becomes less than 1.97 Å, which is the Cu2+–O2– distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ldquotitrationrdquo procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7–d structure such as LaCaBaCu3O7–d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu–O distance is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.