836 resultados para omega-limit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast moving arrays of periodic sub-diffraction-limit pits were dynamically read out via a silver thin film. The mechanism of the dynamic readout is analysed and discussed in detail, both experimentally and theoretically. The analysis and experiment show that, in the course of readout, surface plasmons can be excited at the silver/air interface by the focused laser beam and amplified by the silver thin film. The surface plasmons are transmitted into the substrate/silver interface with a large enhancement. The surface waves at the substrate/silver interface are scattered by the sinusoidal pits of sub-diffraction-limit size. The scattered waves are collected by a converging lens and guided into the detector for the readout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report an all-fiber master oscillator power amplifier (MOPA) system, which can provide high repetition rate and nanosecond pulse with diffraction-limit. The system was constructed using a (2 + 1) X 1 multimode combiner. The Q-Switched, LD pumped Nd:YVO4 solid-state laser wets used (is master oscillator. The 976-nm fiber-coupled module is used as pump source. A 10-m long China-made Yb3+-doped D-shape double-clad large-mode-area fiber was used as amplifier fiber. The MOPA produced as much as 20-W average power with nanosecond pulse and near diffraction limited. The pulse duration is maintained at about 15 its during 50-175 kHz. The system employs a simple and compact architecture and is therefore suitable for the use in practical applications such as scientific and military airborne LIDAR and imaging. Based oil this system. the amplification performances of. the all fiber amplifier is investigated. (C) 2008 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of handling hooked fish at intermediate depth was developed for species which occur deeper than conventional scuba depths. Juvenile pink snappers, Pristipomoides filamentosus, were hauled from 65-100 m to a depth of only 30 m, where the ambient pressure change was a fraction of that produced by hauling fish to the sea surface. This method afforded a unique opportunity to acoustically tag deepwater, physoclistous fish without the need to alter the fish's original swim bladder volume and without the high risk of further injury associated with surface handling. Tagged P. filamentosus survived and behaved well and were tracked successfully. This basic method could be applied to a variety of deepwater species in a number of research approaches, including tagging and dietary studies.