942 resultados para offline programming
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
UNE EXPOSITION NÉONATALE À L’OXYGÈNE MÈNE À DES MODIFICATIONS DE LA FONCTION MITOCHONDRIALE CHEZ LE RAT ADULTE Introduction: L’exposition à l’oxygène (O2) des ratons nouveau-nés a des conséquences à l’âge adulte dont une hypertension artérielle (HTA), une dysfonction vasculaire, une néphropénie et des indices de stress oxydant. En considérant que les reins sont encore en développement actif lors des premiers jours après la naissance chez les rats, jouent un rôle clé dans le développement de l’hypertension et qu’une dysfonction mitochondriale est associé à une augmentation du stress oxydant, nous postulons que les conditions délétères néonatales peuvent avoir un impact significatif au niveau rénal sur la modulation de l’expression de protéines clés du fonctionnement mitochondrial et une production mitochondriale excessive d’espèces réactives de l’ O2. Méthodes: Des ratons Sprague-Dawley sont exposés à 80% d’O2 (H) ou 21% O2 (Ctrl) du 3e au 10e jr de vie. En considérant que plusieurs organes des rats sont encore en développement actif à la naissance, ces rongeurs sont un modèle reconnu pour étudier les complications d’une hyperoxie néonatale, comme celles liées à une naissance prématurée chez l’homme. À 4 et à 16 semaines, les reins sont prélevés et les mitochondries sont extraites suivant une méthode d’extraction standard, avec un tampon contenant du sucrose 0.32 M et différentes centrifugations. L’expression des protéines mitochondriales a été mesurée par Western blot, tandis que la production d’ H202 et les activités des enzymes clés du cycle de Krebs ont été évaluées par spectrophotométrie. Les résultats sont exprimés par la moyenne ± SD. Résultats: Les rats mâles H de 16 semaines (n=6) présentent une activité de citrate synthase (considéré standard interne de l’expression protéique et de l’abondance mitochondriales) augmentée (12.4 ± 8.4 vs 4.1 ± 0.5 μmole/mL/min), une diminution de l’activité d’aconitase (enzyme sensible au redox mitochondrial) (0.11 ± 0.05 vs 0.20 ± 0.04 μmoles/min/mg mitochondrie), ainsi qu’une augmentation dans la production de H202 (7.0 ± 1.3 vs 5.4 ± 0.8 ρmoles/mg protéines mitochondriales) comparativement au groupe Ctrl (n=6 mâles et 4 femelles). Le groupe H (vs Ctrl) présente également une diminution dans l’expression de peroxiredoxin-3 (Prx3) (H 0.61±0.06 vs. Ctrl 0.78±0.02 unité relative, -23%; p<0.05), une protéine impliquée dans l’élimination d’ H202, de l’expression du cytochrome C oxidase (Complexe IV) (H 1.02±0.04 vs. Ctrl 1.20±0.02 unité relative, -15%; p<0.05), une protéine de la chaine de respiration mitochondriale, tandis que l’expression de la protéine de découplage (uncoupling protein)-2 (UCP2), impliquée dans la dispersion du gradient proton, est significativement augmentée (H 1.05±0.02 vs. Ctrl 0.90±0.03 unité relative, +17%; p<0.05). Les femelles H (n=6) (vs Ctrl, n=6) de 16 semaines démontrent une augmentation significative de l’activité de l’aconitase (0.33±0.03 vs 0.17±0.02 μmoles/min/mg mitochondrie), de l’expression de l’ATP synthase sous unité β (H 0.73±0.02 vs. Ctrl 0.59±0.02 unité relative, +25%; p<0.05) et de l’expression de MnSOD (H 0.89±0.02 vs. Ctrl 0.74±0.03 unité relative, +20%; p<0.05) (superoxide dismutase mitochondriale, important antioxidant), tandis que l’expression de Prx3 est significativement réduite (H 1.1±0.07 vs. Ctrl 0.85±0.01 unité relative, -24%; p<0.05). À 4 semaines, les mâles H (vs Ctrl) présentent une augmentation significative de l’expression de Prx3 (H 0.72±0.03 vs. Ctrl 0.56±0.04 unité relative, +31%; p<0.05) et les femelles présentent une augmentation significative de l’expression d’UCP2 (H 1.22±0.05 vs. Ctrl 1.03±0.04 unité relative, +18%; p<0.05) et de l’expression de MnSOD (H 1.36±0.01 vs. 1.19±0.06 unité relative, +14%; p<0.05). Conclusions: Une exposition néonatale à l’O2 chez le rat adulte mène à des indices de dysfonction mitochondriale dans les reins adultes, associée à une augmentation dans la production d’espèces réactives de l’oxygène, suggérant que ces modifications mitochondriales pourraient jouer un rôle dans l’hypertension artérielle et d’un stress oxydant, et par conséquent, être un facteur possible dans la progression vers des maladies cardiovasculaires. Mots-clés: Mitochondries, Reins, Hypertension, Oxygène, Stress Oxydant, Programmation
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets
Resumo:
In order to minimize the risk of failures or major renewals of hull structures during the ship's expected life span, it is imperative that the precaution must be taken with regard to an adequate margin of safety against any one or combination of failure modes including excessive yielding, buckling, brittle fracture, fatigue and corrosion. The most efficient system for combating underwater corrosion is 'cathodic protection'. The basic principle of this method is that the ship's structure is made cathodic, i.e. the anodic (corrosion) reactions are suppressed by the application of an opposing current and the ship is there by protected. This paper deals with state of art in cathodic protection and its programming in ship structure
Resumo:
This paper describes our plans to evaluate the present state of affairs concerning parallel programming and its systems. Three subprojects are proposed: a survey among programmers and scientists, a comparison of parallel programming systems using a standard set of test programs, and a wiki resource for the parallel programming community - the Parawiki. We would like to invite you to participate and turn these subprojects into true community efforts.
Resumo:
In this publication, we report on an online survey that was carried out among parallel programmers. More than 250 people worldwide have submitted answers to our questions, and their responses are analyzed here. Although not statistically sound, the data we provide give useful insights about which parallel programming systems and languages are known and in actual use. For instance, the collected data indicate that for our survey group MPI and (to a lesser extent) C are the most widely used parallel programming system and language, respectively.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
The process of developing software that takes advantage of multiple processors is commonly referred to as parallel programming. For various reasons, this process is much harder than the sequential case. For decades, parallel programming has been a problem for a small niche only: engineers working on parallelizing mostly numerical applications in High Performance Computing. This has changed with the advent of multi-core processors in mainstream computer architectures. Parallel programming in our days becomes a problem for a much larger group of developers. The main objective of this thesis was to find ways to make parallel programming easier for them. Different aims were identified in order to reach the objective: research the state of the art of parallel programming today, improve the education of software developers about the topic, and provide programmers with powerful abstractions to make their work easier. To reach these aims, several key steps were taken. To start with, a survey was conducted among parallel programmers to find out about the state of the art. More than 250 people participated, yielding results about the parallel programming systems and languages in use, as well as about common problems with these systems. Furthermore, a study was conducted in university classes on parallel programming. It resulted in a list of frequently made mistakes that were analyzed and used to create a programmers' checklist to avoid them in the future. For programmers' education, an online resource was setup to collect experiences and knowledge in the field of parallel programming - called the Parawiki. Another key step in this direction was the creation of the Thinking Parallel weblog, where more than 50.000 readers to date have read essays on the topic. For the third aim (powerful abstractions), it was decided to concentrate on one parallel programming system: OpenMP. Its ease of use and high level of abstraction were the most important reasons for this decision. Two different research directions were pursued. The first one resulted in a parallel library called AthenaMP. It contains so-called generic components, derived from design patterns for parallel programming. These include functionality to enhance the locks provided by OpenMP, to perform operations on large amounts of data (data-parallel programming), and to enable the implementation of irregular algorithms using task pools. AthenaMP itself serves a triple role: the components are well-documented and can be used directly in programs, it enables developers to study the source code and learn from it, and it is possible for compiler writers to use it as a testing ground for their OpenMP compilers. The second research direction was targeted at changing the OpenMP specification to make the system more powerful. The main contributions here were a proposal to enable thread-cancellation and a proposal to avoid busy waiting. Both were implemented in a research compiler, shown to be useful in example applications, and proposed to the OpenMP Language Committee.
Resumo:
Genetic Programming can be effectively used to create emergent behavior for a group of autonomous agents. In the process we call Offline Emergence Engineering, the behavior is at first bred in a Genetic Programming environment and then deployed to the agents in the real environment. In this article we shortly describe our approach, introduce an extended behavioral rule syntax, and discuss the impact of the expressiveness of the behavioral description to the generation success, using two scenarios in comparison: the election problem and the distributed critical section problem. We evaluate the results, formulating criteria for the applicability of our approach.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.