909 resultados para octahedral sites
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Resumo:
Several members of the FXYD protein family are tissue-specific regulators of Na,K-ATPase that produce distinct effects on its apparent K(+) and Na(+) affinity. Little is known about the interaction sites between the Na,K-ATPase alpha subunit and FXYD proteins that mediate the efficient association and/or the functional effects of FXYD proteins. In this study, we have analyzed the role of the transmembrane segment TM9 of the Na,K-ATPase alpha subunit in the structural and functional interaction with FXYD2, FXYD4, and FXYD7. Mutational analysis combined with expression in Xenopus oocytes reveals that Phe(956), Glu(960), Leu(964), and Phe(967) in TM9 of the Na,K-ATPase alpha subunit represent one face interacting with the three FXYD proteins. Leu(964) and Phe(967) contribute to the efficient association of FXYD proteins with the Na,K-ATPase alpha subunit, whereas Phe(956) and Glu(960) are essential for the transmission of the functional effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. The relative contribution of Phe(956) and Glu(960) to the K(+) effect differs for different FXYD proteins, probably reflecting the intrinsic differences of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. In contrast to the effect on the apparent K(+) affinity, Phe(956) and Glu(960) are not involved in the effect of FXYD2 and FXYD4 on the apparent Na(+) affinity of Na,K-ATPase. The mutational analysis is in good agreement with a docking model of the Na,K-ATPase/FXYD7 complex, which also predicts the importance of Phe(956), Glu(960), Leu(964), and Phe(967) in subunit interaction. In conclusion, by using mutational analysis and modeling, we show that TM9 of the Na,K-ATPase alpha subunit exposes one face of the helix that interacts with FXYD proteins and contributes to the stable interaction with FXYD proteins, as well as mediating the effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase.
Resumo:
We investigated the neural basis for spontaneous chemo-stimulated increases in ventilation in awake, healthy humans. Blood oxygen level dependent (BOLD) functional MRI was performed in nine healthy subjects using T2 weighted echo planar imaging. Brain volumes (52 transverse slices, cortex to high spinal cord) were acquired every 3.9 s. The 30 min paradigm consisted of six, 5-min cycles, each cycle comprising 45 s of hypoxic-isocapnia, 45 s of isooxic-hypercapnia and 45 s of hypoxic-hypercapnia, with 55 s of non-stimulatory hyperoxic-isocapnia (control) separating each stimulus period. Ventilation was significantly (p<0.001) increased during hypoxic-isocapnia, isooxic-hypercapnia and hypoxic-hypercapnia (17.0, 13.8, 24.9 L/min respectively) vs. control (8.4 L/min) and was associated with significant (p<0.05, corrected for multiple comparisons) signal increases within a bilateral network that included the basal ganglia, thalamus, red nucleus, cerebellum, parietal cortex, cingulate and superior mid pons. The neuroanatomical structures identified provide evidence for the spontaneous control of breathing to be mediated by higher brain centres, as well as respiratory nuclei in the brainstem.
Resumo:
The intermediate hosts of Angiostrongylus costaricensis are terrestrian molluscs, mostly of the family Veronicellidae. The present work aimed at clarifying more accurately the sites of penetration and the migratory routes of A. costaricensis in the tissue slugs and at verifying the pattern of the perilarval reaction at different times of infection. Slugs were individually infected with 5,000 L1, and killed from 30 min to 30 days after infection. From 30 min up to 2 hr after infection, L1 were found within the lumen of different segments of the digestive tube having their number diminished in more advanced times after exposition until complete disappearance. After 30 min of exposition, percutaneous infection occurred, simultaneously to oral infection. Perilarval reaction was observed from 2 hr of infection around larvae in fibromuscular layer, appearing later (after 6 hr) around larvae located in the viscera. A pre-granulomatous reaction was characterized by gradative concentration of amebocytes around larvae, evolving two well-organized granulomas. In this work we confirmed the simultaneous occurrence of oral and percutaneous infections. Perilarval reaction, when very well developed, defined typical granulomatous structure, including epithelioid cell transformation. The infection also caused a systemic mobilization of amebocytes and provoked amebocyte-endothelium interactions.
Resumo:
The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.
Resumo:
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.
Resumo:
Cemeteries are ideal urban areas to study the importance of different types of containers as breeding sites of Aedes aegypti (L.). In the present study, the suitability of plastic, glass, ceramic and metal containers was evaluated in four patches within a cemetery of Buenos Aires City, Argentina. Between October 1998 and May 2000, we found 215 breeding sites of Ae. aegypti out of 13,022 water-filled containers examined. In two patches containing microenvironments sheltered from the sun, the use of the different types of containers was proportional to the offer (correlation coefficient = 0.99, P < 0.05 in both cases). In the remaining patches, plastic and metal containers were the most and less frequent breeding sites, respectively (P < 0.001 in both cases). The number of immatures per breeding site (median = 4.5) did not show significant differences among the four types of containers examined (H3, 215 = 1.216, P = 0.749). Differences found in patches from a same cemetery suggest that different microenvironmental conditions affect the suitability of each type of container for Ae. aegypti breeding. Plastic containers appeared as key breeding sites that should be removed to reduce the Ae. aegypti population in the study area.
Resumo:
BACKGROUND: Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Astrocytes, ubiquitous cells of the brain, express a putative Thy-1 ligand that prevents neurite outgrowth. In this paper, a ligand molecule for Thy-1 was identified, and the consequences of Thy-1 binding for astrocyte function were investigated. RESULTS: Thy-1 has been implicated in cell adhesion and, indeed, all known Thy-1 sequences were found to contain an integrin binding, RGD-like sequence. Thy-1 interaction with beta3 integrin on astrocytes was demonstrated in an adhesion assay using a thymoma line (EL-4) expressing high levels of Thy-1. EL-4 cells bound to astrocytes five times more readily than EL-4(-f), control cells lacking Thy-1. Binding was blocked by either anti-Thy-1 or anti-beta3 antibodies, by RGD-related peptides, or by soluble Thy-1-Fc chimeras. However, neither RGE/RLE peptides nor Thy-1(RLE)-Fc fusion protein inhibited the interaction. Immobilized Thy-1-Fc, but not Thy-1(RLE)-Fc fusion protein supported the attachment and spreading of astrocytes in a Mn(2+)-dependent manner. Binding to Thy-1-Fc was inhibited by RGD peptides. Moreover, vitronectin, fibrinogen, denatured collagen (dcollagen), and a kistrin-derived peptide, but not fibronectin, also mediated Mn(2+)-dependent adhesion, suggesting the involvement of beta3 integrin. The addition of Thy-1 to matrix-bound astrocytes induced recruitment of paxillin, vinculin, and focal adhesion kinase (FAK) to focal contacts and increased tyrosine phosphorylation of proteins such as p130(Cas) and FAK. Furthermore, astrocyte binding to immobilized Thy-1-Fc alone was sufficient to promote focal adhesion formation and phosphorylation on tyrosine. CONCLUSIONS: Thy-1 binds to beta3 integrin and triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment, and spreading.
Resumo:
Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefly surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.
Resumo:
This study aimed at identifying the best ovitrap installation sites for gravid Aedes aegypti in Mirassol, state of São Paulo, Brazil. Ovitraps were installed in ten houses per block over ten blocks. Four ovitraps were placed per residence, one in the bedroom, one in the living room, and two outdoors with one in a sheltered area and one in an outside site. Each week for eleven weeks, visits were made to examine the ovitraps and to change the paddles used for egg-laying. Eggs were analyzed according to the trap location. The results showed that the outdoor sites received significantly more oviposition than indoor sites. Additionally, in respect to the outdoor sites, the outside site received significantly more oviposition than the sheltered site. A b correlation was observed between positive traps and egg numbers. The results are discussed with respect to the best installation site of the traps and their implications in surveillance and control of dengue vectors.
Resumo:
The detection of specific DNA sequences by polymerase chain reaction (PCR) has proved extremely valuable for the analysis of genetic disorders and the diagnosis of a variety of infectious disease pathogens. However, the application to the detection of Schistosoma mansoni is rare, despite a recommendation of the World Health Organization that a major focus of research on schistosomiasis should be on the development and evaluation of new strategies and tools for control of the disease. In this context, a few studies were published for the detection of the parasite in snails, monitoring of cercariae in water bodies, and diagnosis of human infection. The present minireview describes sensitive and specific PCR based systems to detect S. mansoni, indicating possible applications in the detection of snail infection, monitoring of transmission sites, and diagnosis of human infection.